[2] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: 
Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415–436 
MR 2106092 | 
Zbl 1104.90053[3] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: 
Pointwise approximations of discounted Markov decision processes to optimal policies. Internat. J. Pure Appl. Math. 28 (2006), 265–281 
MR 2228009 | 
Zbl 1131.90068[4] Fu M. C., Marcus S. I., Wang, I-J: Monotone optimal policies for a transient queueing staffing problem. Oper. Res. 48 (2000), 327–331
[5] Gallish E.: 
On monotone optimal policies in a queueing model of M/G/1 type with controllable service time distribution. Adv. in Appl. Probab. 11 (1979), 870–887 
MR 0544200[6] Hernández-Lerma O., Lasserre J. B.: 
Discrete-Time Markov Control Processes. Springer-Verlag, New York 1996 
MR 1363487 | 
Zbl 0928.93002[7] Heyman D. P., Sobel M. J.: 
Stochastic Models in Operations Research, Vol. II. Stochastic Optimization. McGraw-Hill, New York 1984 
Zbl 1072.90001[8] Hinderer K., Stieglitz M.: 
Increasing and Lipschitz continuous minimizers in one-dimensional linear-convex systems without constraints: The continuous and the discrete case. Math. Methods Oper. Res. 44 (1996), 189–204 
MR 1409065 | 
Zbl 0860.90126[9] Kalin D.: 
A note on ‘monotone optimal policies for Markov decision processes’. Math. Programming 15 (1978), 220–222 
MR 0509965 | 
Zbl 0387.90106[10] Mendelssohn R., Sobel M.: 
Capital accumulation and the optimization of renewable resource models. J. Econom. Theory 23 (1980), 243–260 
Zbl 0472.90015[11] Pittenger A. O.: 
Monotonicity in a Markov decision process. Math. Oper. Res. 13 (1988), 65–73 
MR 0931486 | 
Zbl 0646.90088[12] Porteus E. L.: Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford, Calif. 2002
[13] Puterman M. L.: 
Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York 1994 
MR 1270015 | 
Zbl 1184.90170[14] Rieder U.: 
Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115–131 
MR 0493590 | 
Zbl 0385.28005[15] Ross S. M.: 
Introduction to Stochastic Dynamic Programming. Academic Press, San Diego 1983 
MR 0749232 | 
Zbl 0567.90065[16] Serfozo R. F.: 
Monotone optimal policies for Markov decision processes. Math. Programming Stud. 6 (1976), 202–215 
MR 0459646 | 
Zbl 0368.60080[17] Stidham, Sh., Weber R. R.: 
Monotonic and insensitive optimal policies for control of queues with undiscounted costs. Oper. Res. 37 (1989), 611–625 
MR 1006813 | 
Zbl 0674.90029[18] Stromberg K. R.: 
An Introduction to Classical Real Analysis. Wadsworth International Group, Belmont 1981 
MR 0604364 | 
Zbl 0454.26001[19] Sundaram R. K.: 
A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996 
MR 1402910 | 
Zbl 0885.90106[20] Topkis D. M.: 
Minimizing a submodular function on a lattice. Oper. Res. 26 (1978), 305–321 
MR 0468177 | 
Zbl 0379.90089[21] Topkis D. M.: 
Supermodularity and Complementarity. Princeton University Press, Princeton, N. J. 1988 
MR 1614637