Previous |  Up |  Next

Article

Title: Monotonicity of minimizers in optimization problems with applications to Markov control processes (English)
Author: Flores–Hernández, Rosa M.
Author: Montes-de-Oca, Raúl
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 3
Year: 2007
Pages: 347-368
Summary lang: English
.
Category: math
.
Summary: Firstly, in this paper there is considered a certain class of possibly unbounded optimization problems on Euclidean spaces, for which conditions that permit to obtain monotone minimizers are given. Secondly, the theory developed in the first part of the paper is applied to Markov control processes (MCPs) on real spaces with possibly unbounded cost function, and with possibly noncompact control sets, considering both the discounted and the average cost as optimality criterion. In the context described, conditions to obtain monotone optimal policies are provided. For the conditions of MCPs presented in the article, several controlled models including, in particular, two inventory/production systems and the linear regulator problem are supplied. (English)
Keyword: monotone minimizer in an optimization problem
Keyword: Markov control process
Keyword: total discounted cost
Keyword: average cost
Keyword: monotone optimal policy
MSC: 90C40
MSC: 93E20
idZBL: Zbl 1170.90513
idMR: MR2362724
.
Date available: 2009-09-24T20:24:30Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135779
.
Reference: [1] Ash R. B.: Real Variables with Basic Metric Space Topology.IEEE Press, New York 1993 Zbl 0920.26002, MR 1193687
Reference: [2] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes.Math. Methods Oper. Res. 60 (2004), 415–436 Zbl 1104.90053, MR 2106092
Reference: [3] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.: Pointwise approximations of discounted Markov decision processes to optimal policies.Internat. J. Pure Appl. Math. 28 (2006), 265–281 Zbl 1131.90068, MR 2228009
Reference: [4] Fu M. C., Marcus S. I., Wang, I-J: Monotone optimal policies for a transient queueing staffing problem.Oper. Res. 48 (2000), 327–331
Reference: [5] Gallish E.: On monotone optimal policies in a queueing model of M/G/1 type with controllable service time distribution.Adv. in Appl. Probab. 11 (1979), 870–887 MR 0544200
Reference: [6] Hernández-Lerma O., Lasserre J. B.: Discrete-Time Markov Control Processes.Springer-Verlag, New York 1996 Zbl 0928.93002, MR 1363487
Reference: [7] Heyman D. P., Sobel M. J.: Stochastic Models in Operations Research, Vol.II. Stochastic Optimization. McGraw-Hill, New York 1984 Zbl 1072.90001
Reference: [8] Hinderer K., Stieglitz M.: Increasing and Lipschitz continuous minimizers in one-dimensional linear-convex systems without constraints: The continuous and the discrete case.Math. Methods Oper. Res. 44 (1996), 189–204 Zbl 0860.90126, MR 1409065
Reference: [9] Kalin D.: A note on ‘monotone optimal policies for Markov decision processes’.Math. Programming 15 (1978), 220–222 Zbl 0387.90106, MR 0509965
Reference: [10] Mendelssohn R., Sobel M.: Capital accumulation and the optimization of renewable resource models.J. Econom. Theory 23 (1980), 243–260 Zbl 0472.90015
Reference: [11] Pittenger A. O.: Monotonicity in a Markov decision process.Math. Oper. Res. 13 (1988), 65–73 Zbl 0646.90088, MR 0931486
Reference: [12] Porteus E. L.: Foundations of Stochastic Inventory Theory.Stanford University Press, Stanford, Calif. 2002
Reference: [13] Puterman M. L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.Wiley, New York 1994 Zbl 1184.90170, MR 1270015
Reference: [14] Rieder U.: Measurable selection theorems for optimization problems.Manuscripta Math. 24 (1978), 115–131 Zbl 0385.28005, MR 0493590
Reference: [15] Ross S. M.: Introduction to Stochastic Dynamic Programming.Academic Press, San Diego 1983 Zbl 0567.90065, MR 0749232
Reference: [16] Serfozo R. F.: Monotone optimal policies for Markov decision processes.Math. Programming Stud. 6 (1976), 202–215 Zbl 0368.60080, MR 0459646
Reference: [17] Stidham, Sh., Weber R. R.: Monotonic and insensitive optimal policies for control of queues with undiscounted costs.Oper. Res. 37 (1989), 611–625 Zbl 0674.90029, MR 1006813
Reference: [18] Stromberg K. R.: An Introduction to Classical Real Analysis.Wadsworth International Group, Belmont 1981 Zbl 0454.26001, MR 0604364
Reference: [19] Sundaram R. K.: A First Course in Optimization Theory.Cambridge University Press, Cambridge 1996 Zbl 0885.90106, MR 1402910
Reference: [20] Topkis D. M.: Minimizing a submodular function on a lattice.Oper. Res. 26 (1978), 305–321 Zbl 0379.90089, MR 0468177
Reference: [21] Topkis D. M.: Supermodularity and Complementarity.Princeton University Press, Princeton, N. J. 1988 MR 1614637
.

Files

Files Size Format View
Kybernetika_43-2007-3_7.pdf 731.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo