Previous |  Up |  Next

Article

Title: Optimality conditions for maximizers of the information divergence from an exponential family (English)
Author: Matúš, František
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 5
Year: 2007
Pages: 731-746
Summary lang: English
.
Category: math
.
Summary: The information divergence of a probability measure $P$ from an exponential family $\mathcal{E}$ over a finite set is defined as infimum of the divergences of $P$ from $Q$ subject to $Q\in \mathcal{E}$. All directional derivatives of the divergence from $\mathcal{E}$ are explicitly found. To this end, behaviour of the conjugate of a log-Laplace transform on the boundary of its domain is analysed. The first order conditions for $P$ to be a maximizer of the divergence from $\mathcal{E}$ are presented, including new ones when $P$ is not projectable to $\mathcal{E}$. (English)
Keyword: Kullback–Leibler divergence
Keyword: relative entropy
Keyword: exponential family
Keyword: information projection
Keyword: log-Laplace transform
Keyword: cumulant generating function
Keyword: directional derivatives
Keyword: first order optimality conditions
Keyword: convex functions
Keyword: polytopes
MSC: 52A20
MSC: 60A10
MSC: 62B10
MSC: 90C90
MSC: 94A17
idZBL: Zbl 1149.94007
idMR: MR2376334
.
Date available: 2009-09-24T20:28:38Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135809
.
Reference: [1] Ay N.: An information-geometric approach to a theory of pragmatic structuring.Ann. Probab. 30 (2002), 416–436 Zbl 1010.62007, MR 1894113
Reference: [2] Ay N.: Locality of Global Stochastic Interaction in Directed Acyclic Networks.Neural Computation 14 (2002), 2959–2980 Zbl 1079.68582
Reference: [3] Ay N., Knauf A.: Maximizing multi-information.Kybernetika 45 (2006), 517–538 MR 2283503
Reference: [4] Ay N., Wennekers T.: Dynamical properties of strongly interacting Markov chains.Neural Networks 16 (2003), 1483–1497
Reference: [5] Barndorff-Nielsen O.: Information and Exponential Families in Statistical Theory.Wiley, New York 1978 Zbl 0387.62011, MR 0489333
Reference: [6] Brown L. D.: Fundamentals of Statistical Exponential Families.(Lecture Notes – Monograph Series 9.) Institute of Mathematical Statistics, Hayward, CA 1986 Zbl 0685.62002, MR 0882001
Reference: [8] Csiszár I., Matúš F.: Information projections revisited.IEEE Trans. Inform. Theory 49 (2003), 1474–1490 Zbl 1063.94016, MR 1984936
Reference: [9] Csiszár I., Matúš F.: Closures of exponential families.Ann. Probab. 33 (2005), 582–600 Zbl 1068.60008, MR 2123202
Reference: [10] Csiszár I., Matúš F.: Generalized maximum likelihood estimates for exponential families.To appear in Probab. Theory Related Fields (2008) Zbl 1133.62039, MR 2372970
Reference: [11] Pietra S. Della, Pietra, V. Della, Lafferty J.: Inducing features of random fields.IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), 380–393
Reference: [12] Letac G.: Lectures on Natural Exponential Families and their Variance Functions.(Monografias de Matemática 50.) Instituto de Matemática Pura e Aplicada, Rio de Janeiro 1992 Zbl 0983.62501, MR 1182991
Reference: [13] Matúš F.: Maximization of information divergences from binary i.i.d. sequences. In: Proc. IPMU 2004, Perugia 2004, Vol. 2, pp. 1303–1306
Reference: [14] Matúš F., Ay N.: On maximization of the information divergence from an exponential family.In: Proc. WUPES’03 (J. Vejnarová, ed.), University of Economics, Prague 2003, pp. 199–204
Reference: [15] Rockafellar R. T.: Convex Analysis.Princeton University Press, Priceton, N.J. 1970 MR 0274683
Reference: [16] Wennekers T., Ay N.: Finite state automata resulting from temporal information maximization.Theory in Biosciences 122 (2003), 5–18 Zbl 1090.68064
.

Files

Files Size Format View
Kybernetika_43-2007-5_10.pdf 1.017Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo