[1] Ay N.:
An information-geometric approach to a theory of pragmatic structuring. Ann. Probab. 30 (2002), 416–436
MR 1894113 |
Zbl 1010.62007
[2] Ay N.:
Locality of Global Stochastic Interaction in Directed Acyclic Networks. Neural Computation 14 (2002), 2959–2980
Zbl 1079.68582
[3] Ay N., Knauf A.:
Maximizing multi-information. Kybernetika 45 (2006), 517–538
MR 2283503
[4] Ay N., Wennekers T.: Dynamical properties of strongly interacting Markov chains. Neural Networks 16 (2003), 1483–1497
[5] Barndorff-Nielsen O.:
Information and Exponential Families in Statistical Theory. Wiley, New York 1978
MR 0489333 |
Zbl 0387.62011
[6] Brown L. D.:
Fundamentals of Statistical Exponential Families. (Lecture Notes – Monograph Series 9.) Institute of Mathematical Statistics, Hayward, CA 1986
MR 0882001 |
Zbl 0685.62002
[8] Csiszár I., Matúš F.:
Information projections revisited. IEEE Trans. Inform. Theory 49 (2003), 1474–1490
MR 1984936 |
Zbl 1063.94016
[10] Csiszár I., Matúš F.:
Generalized maximum likelihood estimates for exponential families. To appear in Probab. Theory Related Fields (2008)
MR 2372970 |
Zbl 1133.62039
[11] Pietra S. Della, Pietra, V. Della, Lafferty J.: Inducing features of random fields. IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), 380–393
[12] Letac G.:
Lectures on Natural Exponential Families and their Variance Functions. (Monografias de Matemática 50.) Instituto de Matemática Pura e Aplicada, Rio de Janeiro 1992
MR 1182991 |
Zbl 0983.62501
[13] Matúš F.: Maximization of information divergences from binary i. i.d. sequences. In: Proc. IPMU 2004, Perugia 2004, Vol. 2, pp. 1303–1306
[14] Matúš F., Ay N.: On maximization of the information divergence from an exponential family. In: Proc. WUPES’03 (J. Vejnarová, ed.), University of Economics, Prague 2003, pp. 199–204
[15] Rockafellar R. T.:
Convex Analysis. Princeton University Press, Priceton, N.J. 1970
MR 0274683
[16] Wennekers T., Ay N.:
Finite state automata resulting from temporal information maximization. Theory in Biosciences 122 (2003), 5–18
Zbl 1090.68064