Previous |  Up |  Next

Article

Title: Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing (English)
Author: Drblíková, Olga
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 6
Year: 2007
Pages: 777-788
Summary lang: English
.
Category: math
.
Summary: This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient in normal direction. Moreover, the proofs of $L^2(\Omega )$ – a priori estimates for our discrete solution are given. Finally we present our computational results. (English)
Keyword: finite volume method
Keyword: diamond-cell method
Keyword: image processing
Keyword: nonlinear parabolic equation
Keyword: tensor diffusion
MSC: 35B45
MSC: 35K57
MSC: 35K60
MSC: 65M60
MSC: 68U10
MSC: 74S10
MSC: 94A08
idZBL: Zbl 1140.35362
idMR: MR2388392
.
Date available: 2009-09-24T20:29:22Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135814
.
Reference: [1] Catté F., Lions P. L., Morel J. M., Coll T.: Image selective smoothing and edge detection by nonlinear diffusion.SIAM J. Numer. Anal. 129 (1991), 182–193 MR 1149092
Reference: [2] Coirier W. J.: An a Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations.PhD Thesis, Michigan Univ. NASA Lewis Research Center, 1994
Reference: [3] Coirier W. J., Powell K. G.: A cartesian, cell-based approach for adaptive-refined solutions of the Euler and Navier–Stokes equations.AIAA 1995
Reference: [4] Coudiere Y., Vila J. P., Villedieu P.: Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem.M2AN Math. Model. Numer. Anal. 33 (1999), 493–516 Zbl 0937.65116, MR 1713235, 10.1051/m2an:1999149
Reference: [6] Eymard R., Gallouët, T., Herbin R.: Finite Volume Methods.In: Handbook for Numerical Analysis, Vol. 7 (Ph. Ciarlet, J. L. Lions, eds.), Elsevier, Amsterdam 2000 Zbl 1191.65142, MR 1804748
Reference: [7] Guichard F., Morel J. M.: Image Analysis and P.D.E.s. IPAM GBM Tutorials, 2001
Reference: [8] Handlovičová A., Mikula, K., Sgallari F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution.Numer. Math. 93 (2003), 675–695 Zbl 1065.65105, MR 1961884, 10.1007/s002110100374
Reference: [9] Mikula K., Ramarosy N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing.Numer. Math. 89 (2001), 561–590 Zbl 1013.65094, MR 1864431, 10.1007/PL00005479
Reference: [10] Weickert J.: Coherence-enhancing diffusion filtering.Internat. J. Comput. Vision 31 (1999), 111–127 10.1023/A:1008009714131
Reference: [11] Weickert J., Scharr H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance.J. Visual Comm. and Image Repres. 13 (2002), 1–2, 103–118 10.1006/jvci.2001.0495
.

Files

Files Size Format View
Kybernetika_43-2007-6_3.pdf 852.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo