Full entry |
PDF
(0.7 MB)
Feedback

Hopf bifurcation; periodic solution; multiple delays and parameters; hyperchaotic Lü system; hyperchaotic Chen system; hyperchaotic Lorenz system

References:

[1] Chen A. M., Lu J. A., Lü J. H., Yu S. M.: **Generating hyperchaotic Lü attractor via state feedback control**. Physica A 364 (2006), 103–110

[2] Wolf A., Swift J. B., Swinney H. L., Vastano J. A.: **Determining Lyapunov exponents from a time series**. Physica D 16 (1985), 285–317 MR 0805706 | Zbl 0585.58037

[3] Wei J. J., Ruan S. G.: **Stability and bifurcation in a neural network model with two delays**. Physica D 130 (1999), 255–272 MR 1692866 | Zbl 1066.34511

[4] Briggs K.: **An improved method for estimating Liapunov exponents of chaotic time series**. Phys. Lett. A 151 (1990), 27–32 MR 1085170

[5] Cooke K. L., Grossman Z.: **Discrete delay, distribute delay and stability switches**. J. Math. Anal. Appl. 86 (1982), 592–627 MR 0652197

[6] Olien L., Belair J.: **Bifurcation, stability and monotonicity properities of a delayed neural network model**. Physica D 102 (1997), 349–363 MR 1439692

[7] Heyes N. D.: **Linear autonomous neutral functional differential equations**. J. Differential Equations 15 (1974), 106–128 MR 0338520

[8] Jia Q.: **Hyperchaos generated from the Lorenz chaotic system and its control**. Phys. Lett. A 366 (2007), 217–222 Zbl 1203.93086

[9] Datko R.: **A procedure for determination of the exponential stability of certain differential difference equations**. Quart. Appl. Math. 36 (1978), 279–292 MR 0508772 | Zbl 0405.34051

[10] Wu X. J.: **Chaos synchronization of the new hyperchaotic Chen system via nonlinear control**. Acta Phys. Sinica 22 (2006), 12, 6261–6266