Previous |  Up |  Next

Article

Title: Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers (English)
Author: Zhang, Lan
Author: Zhang, Chengjian
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 1
Year: 2008
Pages: 35-42
Summary lang: English
.
Category: math
.
Summary: A four-dimensional hyperchaotic Lü system with multiple time-delay controllers is considered in this paper. Based on the theory of Hopf bifurcation in delay system, we obtain a simple relationship between the parameters when the system has a periodic solution. Numerical simulations show that the assumption is a rational condition, choosing parameter in the determined region can control hyperchaotic Lü system well, the chaotic state is transformed to the periodic orbit. Finally, we consider the differences between the analysis of the hyperchaotic Lorenz system, hyperchaotic Chen system and hyperchaotic Lü system. (English)
Keyword: Hopf bifurcation
Keyword: periodic solution
Keyword: multiple delays and parameters
Keyword: hyperchaotic Lü system
Keyword: hyperchaotic Chen system
Keyword: hyperchaotic Lorenz system
MSC: 34K18
MSC: 37D45
MSC: 37N35
MSC: 93C15
idZBL: Zbl 1145.93361
idMR: MR2405053
.
Date available: 2009-09-24T20:31:47Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135831
.
Reference: [1] Chen A. M., Lu J. A., Lü J. H., Yu S. M.: Generating hyperchaotic Lü attractor via state feedback control.Physica A 364 (2006), 103–110
Reference: [2] Wolf A., Swift J. B., Swinney H. L., Vastano J. A.: Determining Lyapunov exponents from a time series.Physica D 16 (1985), 285–317 Zbl 0585.58037, MR 0805706
Reference: [3] Wei J. J., Ruan S. G.: Stability and bifurcation in a neural network model with two delays.Physica D 130 (1999), 255–272 Zbl 1066.34511, MR 1692866
Reference: [4] Briggs K.: An improved method for estimating Liapunov exponents of chaotic time series.Phys. Lett. A 151 (1990), 27–32 MR 1085170
Reference: [5] Cooke K. L., Grossman Z.: Discrete delay, distribute delay and stability switches.J. Math. Anal. Appl. 86 (1982), 592–627 MR 0652197
Reference: [6] Olien L., Belair J.: Bifurcation, stability and monotonicity properities of a delayed neural network model.Physica D 102 (1997), 349–363 MR 1439692
Reference: [7] Heyes N. D.: Linear autonomous neutral functional differential equations.J. Differential Equations 15 (1974), 106–128 MR 0338520
Reference: [8] Jia Q.: Hyperchaos generated from the Lorenz chaotic system and its control.Phys. Lett. A 366 (2007), 217–222 Zbl 1203.93086
Reference: [9] Datko R.: A procedure for determination of the exponential stability of certain differential difference equations.Quart. Appl. Math. 36 (1978), 279–292 Zbl 0405.34051, MR 0508772
Reference: [10] Wu X. J.: Chaos synchronization of the new hyperchaotic Chen system via nonlinear control.Acta Phys. Sinica 22 (2006), 12, 6261–6266
.

Files

Files Size Format View
Kybernetika_44-2008-1_3.pdf 724.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo