Title:
|
Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming (English) |
Author:
|
Roy, Jean-Sébastien |
Author:
|
Lenoir, Arnaud |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
44 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
171-184 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We propose two methods to solve multistage stochastic programs when only a (large) finite set of scenarios is available. The usual scenario tree construction to represent non-anticipativity constraints is replaced by alternative discretization schemes coming from non-parametric estimation ideas. In the first method, a penalty term is added to the objective so as to enforce the closeness between decision variables and the Nadaraya–Watson estimation of their conditional expectation. A numerical application of this approach on an hydro-power plant management problem is developed. The second method exploits the interpretation of kernel estimators as a sum of basis functions. (English) |
Keyword:
|
multistage stochastic programming |
Keyword:
|
scenarios |
Keyword:
|
discrete approximation |
MSC:
|
49M25 |
MSC:
|
60F25 |
MSC:
|
62G07 |
MSC:
|
90C15 |
MSC:
|
90C59 |
MSC:
|
90C90 |
idZBL:
|
Zbl 1154.90560 |
idMR:
|
MR2428218 |
. |
Date available:
|
2009-09-24T20:33:15Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135842 |
. |
Reference:
|
[1] Babuska I., Melenk J.: The partition of unity method.International Journal for Numerical Methods in Engineering 40 (1998), 727–758 MR 1429534 |
Reference:
|
[2] Barty K.: Contributions à la discrétisation des contraintes de mesurabilité pour les problčmes d’optimisation stochastiques.PhD. Thesis, Ecole nationale des ponts et chaussées, 2004 |
Reference:
|
[3] Cohen G.: Optimal scenario tree topology and corresponding rate of convergence.In: Proc. 11th Conference on Stochastic Programming, 2007 |
Reference:
|
[4] Dallagi A.: Méthodes particulaires en commande optimale stochastique.PhD. Thesis, Université Paris I, 2007 |
Reference:
|
[5] Devroye L. P.: On the almost everywhere convergence of nonparametric regression function estimates.Ann. Statist. 9 (1981), 1310–1319 Zbl 0477.62025, MR 0630113 |
Reference:
|
[6] Devroye L. P., Wagner T.: Distribution-free consistency results in nonparametric discrimination and regression function estimation.Ann. Statist. 8 (1980), 231–239 Zbl 0431.62025, MR 0560725 |
Reference:
|
[7] Gröwe-Kuska N., Heitsch, H., Römisch W.: Scenario reduction and scenario tree construction for power management problem.In: Power Tech Conference Proceedings, IEEE Bologna, 2003 |
Reference:
|
[8] Heitsch H., Römisch W.: Generation of multivariate scenario trees to model stochasticity in power management.IEEE St. Petersburg Power Tech 2005, 2005 |
Reference:
|
[9] Heitsch H., Römisch W.: Scenario Tree Modeling for Multistage Stochastic Programs.Preprint Humboldt-University Berlin, Institute of Mathematics, 2005 Zbl 1173.90007, MR 2470797 |
Reference:
|
[10] Nadaraya E.: On estimating regression.Theory Probab. Appl. 9 (1964), 141–142 Zbl 0136.40902 |
Reference:
|
[11] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs.Math. Oper. Res. 30 (2005), 245–256 Zbl 1165.90014, MR 2125146 |
Reference:
|
[12] Spiegelman C., Sacks J.: Consistent window estimation in nonparametric regression.Ann. Statist. 8 (1980), 240–246 Zbl 0432.62066, MR 0560726 |
Reference:
|
[13] Watson G.: Smooth regression analysis.Sankhya Ser. A 26 (1964), 359–372 Zbl 0137.13002, MR 0185765 |
. |