Previous |  Up |  Next

Article

Title: Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming (English)
Author: Roy, Jean-Sébastien
Author: Lenoir, Arnaud
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 2
Year: 2008
Pages: 171-184
Summary lang: English
.
Category: math
.
Summary: We propose two methods to solve multistage stochastic programs when only a (large) finite set of scenarios is available. The usual scenario tree construction to represent non-anticipativity constraints is replaced by alternative discretization schemes coming from non-parametric estimation ideas. In the first method, a penalty term is added to the objective so as to enforce the closeness between decision variables and the Nadaraya–Watson estimation of their conditional expectation. A numerical application of this approach on an hydro-power plant management problem is developed. The second method exploits the interpretation of kernel estimators as a sum of basis functions. (English)
Keyword: multistage stochastic programming
Keyword: scenarios
Keyword: discrete approximation
MSC: 49M25
MSC: 60F25
MSC: 62G07
MSC: 90C15
MSC: 90C59
MSC: 90C90
idZBL: Zbl 1154.90560
idMR: MR2428218
.
Date available: 2009-09-24T20:33:15Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135842
.
Reference: [1] Babuska I., Melenk J.: The partition of unity method.International Journal for Numerical Methods in Engineering 40 (1998), 727–758 MR 1429534
Reference: [2] Barty K.: Contributions à la discrétisation des contraintes de mesurabilité pour les problčmes d’optimisation stochastiques.PhD. Thesis, Ecole nationale des ponts et chaussées, 2004
Reference: [3] Cohen G.: Optimal scenario tree topology and corresponding rate of convergence.In: Proc. 11th Conference on Stochastic Programming, 2007
Reference: [4] Dallagi A.: Méthodes particulaires en commande optimale stochastique.PhD. Thesis, Université Paris I, 2007
Reference: [5] Devroye L. P.: On the almost everywhere convergence of nonparametric regression function estimates.Ann. Statist. 9 (1981), 1310–1319 Zbl 0477.62025, MR 0630113
Reference: [6] Devroye L. P., Wagner T.: Distribution-free consistency results in nonparametric discrimination and regression function estimation.Ann. Statist. 8 (1980), 231–239 Zbl 0431.62025, MR 0560725
Reference: [7] Gröwe-Kuska N., Heitsch, H., Römisch W.: Scenario reduction and scenario tree construction for power management problem.In: Power Tech Conference Proceedings, IEEE Bologna, 2003
Reference: [8] Heitsch H., Römisch W.: Generation of multivariate scenario trees to model stochasticity in power management.IEEE St. Petersburg Power Tech 2005, 2005
Reference: [9] Heitsch H., Römisch W.: Scenario Tree Modeling for Multistage Stochastic Programs.Preprint Humboldt-University Berlin, Institute of Mathematics, 2005 Zbl 1173.90007, MR 2470797
Reference: [10] Nadaraya E.: On estimating regression.Theory Probab. Appl. 9 (1964), 141–142 Zbl 0136.40902
Reference: [11] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs.Math. Oper. Res. 30 (2005), 245–256 Zbl 1165.90014, MR 2125146
Reference: [12] Spiegelman C., Sacks J.: Consistent window estimation in nonparametric regression.Ann. Statist. 8 (1980), 240–246 Zbl 0432.62066, MR 0560726
Reference: [13] Watson G.: Smooth regression analysis.Sankhya Ser. A 26 (1964), 359–372 Zbl 0137.13002, MR 0185765
.

Files

Files Size Format View
Kybernetika_44-2008-2_4.pdf 1.570Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo