Previous |  Up |  Next

Article

Title: Numerical study of discretizations of multistage stochastic programs (English)
Author: Hilli, Petri
Author: Pennanen, Teemu
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 2
Year: 2008
Pages: 185-204
Summary lang: English
.
Category: math
.
Summary: This paper presents a numerical study of a deterministic discretization procedure for multistage stochastic programs where the underlying stochastic process has a continuous probability distribution. The discretization procedure is based on quasi-Monte Carlo techniques originally developed for numerical multivariate integration. The solutions of the discretized problems are evaluated by statistical bounds obtained from random sample average approximations and out-of-sample simulations. In the numerical tests, the optimal values of the discretizations as well as their first-stage solutions approach those of the original infinite-dimensional problem as the discretizations are made finer. (English)
Keyword: stochastic programming
Keyword: discretization
Keyword: integration quadratures
Keyword: simulation
MSC: 49M25
MSC: 90C15
MSC: 90C25
idZBL: Zbl 1154.90556
idMR: MR2428219
.
Date available: 2009-09-24T20:33:24Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135843
.
Reference: [1] Blomvall J., Shapiro A.: Solving multistage asset investment problems by the sample average approximation method.Math. Program. 108 (2006), 571–595 Zbl 1130.90373, MR 2238715
Reference: [2] Chiralaksanakul A.: Monte Carlo Methods for Multi-stage Stochastic Programs.PhD. Thesis, University of Texas at Austin, 2003
Reference: [3] Chiralaksanakul A., Morton D.: Assessing policy quality in multi-stage stochastic programming.Stochastic Programming E-Print Series, 2004
Reference: [4] Fourer R., Gay D. M., Kernighan B.W.: AMPL: A Modeling Language for Mathematical Programming.Second edition. Thomson, Canada 2002
Reference: [5] Frauendorfer K.: Barycentric scenario trees in convex multistage stochastic programming.Math. Programming 75 (1996), 277–293 Zbl 0874.90144, MR 1426642
Reference: [6] Glasserman P.: Monte Carlo Methods in Financial Engineering.Springer-Verlag, New York 2004 Zbl 1038.91045, MR 1999614
Reference: [7] Heitsch H., Römisch W.: Scenario tree modelling for multistage stochastic programs.Math. Programming. To appear MR 2470797
Reference: [8] Hilli P., Koivu M., Pennanen, T., Ranne A.: A stochastic programming model for asset liability management of a Finnish pension company.Ann. Oper. Res. 152 (2007), 115–139 Zbl 1132.91493, MR 2303128
Reference: [9] Kall P., Mayer J.: Stochastic Linear Programming.Springer-Verlag, New York 2005 Zbl 1211.90003, MR 2118904
Reference: [10] Kuhn D.: Generalized Bounds for Convex Multistage Stochastic Programs.Springer-Verlag, Berlin 2005 Zbl 1103.90069, MR 2103400
Reference: [11] Niederreiter H.: Random Number Generation and Quasi-Monte Carlo Methods.SIAM, Philadelphia 1992 Zbl 0761.65002, MR 1172997
Reference: [12] Niederreiter H., Talay D.: Monte Carlo and Quasi-Monte Carlo Methods 2004.Springer-Verlag, Berlin 2006 Zbl 1084.65005, MR 2208697
Reference: [13] Olsen P.: Discretizations of multistage stochastic programming problems.Math. Programming Stud. 6 (1976), 111–124 Zbl 0374.90053, MR 0462589
Reference: [14] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs.Math. Oper. Res. 30 (2005), 245–256 Zbl 1165.90014, MR 2125146
Reference: [15] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures.Math. Programming, Series B. To appear Zbl 1165.90014, MR 2421289
Reference: [16] Pennanen T., Koivu M.: Integration quadratures in discretization of stochastic programs.SPEPS E-Print Series, 2002
Reference: [17] Pflug G.: Scenario tree generation for multiperiod financial optimization by optimal discretization.Math. Programming 89 (2001), 251–271 MR 1816503
Reference: [18] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: Numerical Recipes in C.Cambridge University Press, Cambridge 1992 Zbl 1078.65500, MR 1201159
Reference: [19] Rockafellar R. T., Wets R. J.-B.: Continuous versus measurable recourse in $N$-stage stochastic programming.J. Math. Anal. Appl. 48 (1974), 836–859 Zbl 0309.90039, MR 0406509
Reference: [20] Rockafellar R. T., Wets R. J.-B.: Nonanticipativity and $L^1$-martingales in stochastic optimization problems.Math. Programming Stud. (1976), 170–187 MR 0462590
Reference: [21] Shapiro A.: Inference of statistical bounds for multistage stochastic programming problems.Math. Methods Oper. Res. 58 (2003), 57–68 Zbl 1116.90384, MR 2002322
Reference: [22] Shapiro A.: On complexity of multistage stochastic programs.Oper. Res. Lett. 34 (2006), 1–8 Zbl 1080.90056, MR 2186066
Reference: [23] Sloan I. H., Joe S.: Lattice Methods for Multiple Integration.The Clarendon Press Oxford University Press, New York 1994 Zbl 0855.65013, MR 1442955
Reference: [24] Sobol’ I. M.: The distribution of points in a cube and the approximate evaluation of integrals.U.S.S.R. Computational Math. And Math. Phys. (1967), 86–112 Zbl 0185.41103, MR 0219238
.

Files

Files Size Format View
Kybernetika_44-2008-2_5.pdf 918.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo