Previous |  Up |  Next

Article

Title: A new approach to generalized chaos synchronization based on the stability of the error system (English)
Author: Zhu, Zhiliang
Author: Li, Shuping
Author: Yu, Hai
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 4
Year: 2008
Pages: 492-500
Summary lang: English
.
Category: math
.
Summary: With a chaotic system being divided into linear and nonlinear parts, a new approach is presented to realize generalized chaos synchronization by using feedback control and parameter commutation. Based on a linear transformation, the problem of generalized synchronization (GS) is transformed into the stability problem of the synchronous error system, and an existence condition for GS is derived. Furthermore, the performance of GS can be improved according to the configuration of the GS velocity. Further generalization and appropriation can be acquired without a stability requirement for the chaotic system’s linear part. The Lorenz system and a hyperchaotic system are taken for illustration and verification and the results of the simulation indicate that the method is effective. (English)
Keyword: chaotic system
Keyword: generalized synchronization
Keyword: configuration of poles
Keyword: synchronous velocity
MSC: 37N35
MSC: 58E25
MSC: 93B55
MSC: 93C10
idZBL: Zbl 1172.93015
idMR: MR2459067
.
Date available: 2009-09-24T20:37:01Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135868
.
Reference: [1] Carroll L., Pecora M.: Synchronizing chaotic circuits.IEEE Trans. Circuits and Systems 38 (2001), 4, 453–456 Zbl 1058.37538
Reference: [2] Chua L. O.: Experimental chaos synchronization in Chua’s circuit.Internat. J. Bifurc. Chaos 2 (2002), 3, 705–708 Zbl 0875.94133
Reference: [3] Dachselt F., Schwarz W.: Chaos and cryptography.IEEE Trans. Circuits and Systems, Fundamental Theory and Applications 48 (2001), 12, 1498–1509 Zbl 0999.94030, MR 1873100
Reference: [4] Elabbasy E. M., Agiza H. N., El-Dessoky M. M.: Controlling and synchronization of Rossler system with uncertain parameters.Internat. J. Nonlinear Sciences and Numerical Simulation 5 (2005), 2, 171–181 MR 2087956
Reference: [5] Fang J. Q.: Control and synchronization of chaos in nonlinear systems and prospects for application 2.Progr. Physics 16 (1996), 2, 174–176
Reference: [6] Fang J. Q.: Mastering Chaos and Development High-tech.Atomic Energy Press, Beijing, 2002
Reference: [7] Gao Y., Weng J. Q., al. X. S. Luo et: Generalized synchronization of hyperchaotic circuit.J. Electronics 6 (2002), 24. 855–959
Reference: [8] Kapitaniak T.: Experimental synchronization of chaos using continuous control.Internat. J. Bifurc. Chaos 4 (2004), 2, 483–488 Zbl 0825.93298
Reference: [9] Kocarev L., Parlitz U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems.Phys. Rev. Lett. 11 (1996), 76, 1816–1819
Reference: [10] Lorenz E. N.: Deterministic nonperiodic flow.J. Atmospheric Sci. 20 (1963), 1. 130–141
Reference: [11] Pecora M., Carroll L.: Synchronization in chaotic systems.Phys. Rev. Lett. 64 (1990), 8, 821–823 Zbl 0938.37019, MR 1038263
Reference: [12] Pecora M., Carroll L.: Driving systems with chaotic signals.Phys. Rev. A 44 (2001), 4, 2374–2383
Reference: [13] Yang T., Chua L. O.: Generalized synchronization of chaos via linear transformations.Internat. J. Bifur. Chaos 9 (1999), 1, 215–219 Zbl 0937.37019, MR 1689607
.

Files

Files Size Format View
Kybernetika_44-2008-4_5.pdf 729.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo