Previous |  Up |  Next

Article

Title: The Frisch scheme in algebraic and dynamic identification problems (English)
Author: Guidorzi, Roberto
Author: Diversi, Roberto
Author: Soverini, Umberto
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 5
Year: 2008
Pages: 585-616
Summary lang: English
.
Category: math
.
Summary: This paper considers the problem of determining linear relations from data affected by additive noise in the context of the Frisch scheme. The loci of solutions of the Frisch scheme and their properties are first described in the algebraic case. In this context two main problems are analyzed: the evaluation of the maximal number of linear relations compatible with data affected by errors and the determination of the linear relation actually linking the noiseless data. Subsequently the extension of the Frisch scheme to the identification of dynamical systems is considered for both SISO and MIMO cases and the problem of its application to real processes is investigated. For this purpose suitable identification criteria and model parametrizations are described. Finally two classical identification problems are mapped into the Frisch scheme, the blind identification of FIR channels and the identification of AR + noise models. This allows some theoretical and practical extensions. (English)
Keyword: system identification
Keyword: errors-in-variables models
Keyword: Frisch scheme
Keyword: linear systems
MSC: 93C05
MSC: 93E12
idZBL: Zbl 1177.93089
idMR: MR2479307
.
Date available: 2009-09-24T20:38:24Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135877
.
Reference: [1] Abed-Meraim K., Qiu, W., Hua Y.: Blind system identification.Proc. IEEE 85 (1997), 1310–1322
Reference: [2] Anderson B. D. O., Deistler M.: Identifiability of dynamic errors-in-variables models.J. Time Ser. Anal. 5 (1984), 1–13 MR 0747410
Reference: [3] Anderson B. D. O., Deistler, M., Scherrer W.: Solution set properties for static errors-in-variables problems.Automatica 32 (1996), 1031–1035 Zbl 0854.93032, MR 1405459
Reference: [4] Beghelli S., Castaldi P., Guidorzi, R., Soverini U.: A robust criterion for model selection in identification from noisy data.In: Proc. 9th International Conference on Systems Engineering, Las Vegas 1993, pp. 480–484
Reference: [5] Beghelli S., Guidorzi, R., Soverini U.: The Frisch scheme in dynamic system identification.Automatica 26 (1990), 171–176 Zbl 0714.93058, MR 1101663
Reference: [6] Bobillet W., Grivel E., Guidorzi, R., Najim M.: Noisy speech de-reverberation as a SIMO system identification issue.In: Proc. IEEE Workshop on Statistical Signal Processing, Bordeaux 2005
Reference: [7] Bobillet W., Diversi R., Grivel E., Guidorzi R., Najim, M., Soverini U.: Speech enhancement combining optimal smoothing and errors-in-variables identification of noisy AR processes.IEEE Trans. Signal Process. 55 (2007), 5564–5578 MR 2440193
Reference: [8] Deistler M.: Linear errors-in-variables models.In: Time Series and Linear Systems (Lecture Notes in Control and Information Sciences; S. Bittanti, ed.). Springer–Verlag, Berlin 1986, pp. 37–67 MR 0897821
Reference: [9] Diversi R., Guidorzi, R., Soverini U.: A new criterion in EIV identification and filtering applications.In: Preprints 13th IFAC Symposium on System Identification, Rotterdam 2003, pp. 1993–1998
Reference: [10] Diversi R., Guidorzi, R., Soverini U.: Frisch scheme-based algorithms for EIV identification.In: Proc. 12th IEEE Mediterranean Conference on Control and Automation, Kusadasi 2004
Reference: [11] Diversi R., Guidorzi, R., Soverini U.: Blind identification and equalization of two-channel FIR systems in unbalanced noise environments.Signal Process. 85 (2005), 215–225 Zbl 1148.94395
Reference: [12] Diversi R., Guidorzi, R., Soverini U.: A noise-compensated estimation scheme for AR processes.In: Proc. 44th IEEE Conference on Decision and Control and 8th European Control Conference, Seville 2005, pp. 4146–4151
Reference: [13] Diversi R., Guidorzi, R., Soverini U.: Yule–Walker equations in the Frisch scheme solution of errors-in-variables identification problems.In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 391–395
Reference: [14] Diversi R., Guidorzi, R., Soverini U.: Identification of autoregressive models in the presence of additive noise.International J. Adaptive Control and Signal Process. 22 (2008), 465–481 MR 2442414
Reference: [15] Diversi R., Soverini, U., Guidorzi R.: A new estimation approach for AR models in presence of noise.In: Preprints 16th IFAC World Congress, Prague 2005 MR 2164442
Reference: [16] Fernando K. V., Nicholson H.: Identification of linear systems with input and output noise: the Koopmans–Levin method.IEE Proc. 132 (1985), 30–36 Zbl 0554.93071
Reference: [17] Frisch R.: Statistical Confluence Analysis by Means of Complete Regression Systems.Economic Institute, Pub. No. 5, Oslo University 1934 Zbl 0011.21903
Reference: [18] Guidorzi R.: Equivalence, invariance and dynamical system canonical modelling.Part I, Kybernetika 25 (1989), 233–257, Part II, Kybernetika 25 (1989), 386–407 Zbl 0699.93006
Reference: [19] Guidorzi R.: Certain models from uncertain data: the algebraic case.Systems Control Lett. 17 (1991), 415–424 Zbl 0749.93018, MR 1138941
Reference: [20] Guidorzi R.: Errors-in-variables identification and model uniqueness.In: Statistical Modelling and Latent Variables (K. Haagen, D. J. Bartholomew, and M. Deistler, eds.), North Holland, Amsterdam 1993, pp. 127–150 MR 1236712
Reference: [21] Guidorzi R.: Identification of the maximal number of linear relations from noisy data.Systems Control Lett. 24 (1995), 159–166 Zbl 0877.93131, MR 1314413
Reference: [22] Guidorzi R.: Identification of multivariable processes in the Frisch scheme context.MTNS’96, St. Louis 1996
Reference: [23] Guidorzi R., Diversi R.: Determination of linear relations from real data in the Frisch scheme context.In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 530–535
Reference: [24] Guidorzi R., Diversi, R., Soverini U.: Blind identification and equalization of multichannel FIR systems in unbalanced noise environments.Signal Process. 87 (2007), 654–664 Zbl 1186.94137
Reference: [25] Guidorzi R., Diversi R., Soverini, U., Valentini A.: A noise signature approach to fault detection and isolation.In: Proc. 16th International Symposium on Mathematical Theory of Networks and Systems, Leuven 2004
Reference: [26] Guidorzi R., Pierantoni M.: A new parametrization of Frisch scheme solutions.In: Proc. XII International Conference on Systems Science, Wroclaw 1995, pp. 114–120
Reference: [27] Guidorzi R., Soverini, U., Diversi R.: Multivariable EIV identification.In: Proc. 10th IEEE Mediterranean Conference on Control and Automation, Lisboa 2002
Reference: [28] Guidorzi R., Stoian A.: On the computation of the maximal corank of a covariance matrix under the Frisch scheme.In: Proc. 10th IFAC Symposium on System Identification, Copenhagen 1994, pp. 171–173
Reference: [29] Kalman R. E.: Identification from real data.In: Current Developments in the Interface: Economics, Econometrics, Mathematics (M. Hazewinkel, H. G. Rinnooy Kan, and D. Reidel, eds.), Dordrecht 1982, pp. 161–196
Reference: [30] Kalman R. E.: Nine Lectures on Identification.(Lecture Notes on Economics and Mathematical Systems.) Springer–Verlag, Berlin (to appear)
Reference: [31] Kalman R. E.: System identification from noisy data.In: Dynamical Systems II (A. R. Bednarek and L. Cesari, eds.), Academic Press 1982, pp. 135–164 MR 0703692
Reference: [32] Kay S. M.: The effects of noise on the autoregressive spectral estimator.IEEE Trans. Acoustics, Speech and Signal Process. 27 (1979), 478–485 Zbl 0441.62084
Reference: [33] Kay S. M.: Noise compensation for autoregressive spectral estimates.IEEE Trans. Acoustics, Speech and Signal Process. 28 (1980), 292–303 Zbl 0519.62082
Reference: [34] Levin M. J.: Estimation of a system pulse transfer function in the presence of noise.IEEE Trans. Automat. Control 9 (1964), 229–235
Reference: [35] Malinvaud E.: Méthodes statistiques de l’économétrie.Third edition. Dunod, Paris 1980 Zbl 0421.62084
Reference: [36] Schachermayer W., Deistler M.: The set of observationally equivalent errors-in-variables models.Systems Control Lett. 34 (1998), 101–104 Zbl 0902.93067, MR 1629016
Reference: [37] Söderström T.: Errors-in-variables methods in system identification.Automatica 43 (2007), 939–958 Zbl 1193.93090, MR 2306743
Reference: [38] Söderström T.: Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems.IEEE Trans. Automat. Control 52 (2007), 985–997 MR 2329890
Reference: [39] Stoica P., Nehorai A.: On the uniqueness of prediction error models for systems with noisy input-output data.Automatica 23 (1987), 541–543 Zbl 0616.93074
Reference: [40] Tong L., Perreau S.: Multichannel blind identification: from subspace to maximum likelihood methods.Proc. IEEE 86 (1998), 1951–1968
Reference: [41] (ed.) S. Van Huffel: Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modelling.SIAM, Philadelphia 1997 MR 1447457
Reference: [42] Huffel S. Van, (eds.) P. Lemmerling: Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications.Kluwer Academic Publishers, Dordrecht 2002 MR 1951009
Reference: [43] Woodgate K. G.: An upper bound on the number of linear relations identified from noisy data by the Frisch scheme.Systems Control Lett. 24 (1995), 153–158 Zbl 0877.93130, MR 1314412
.

Files

Files Size Format View
Kybernetika_44-2008-5_1.pdf 976.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo