Previous |  Up |  Next

Article

Title: On quasi-homogeneous copulas (English)
Author: Mayor, Gaspar
Author: Mesiar, Radko
Author: Torrens, Joan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 6
Year: 2008
Pages: 745-756
Summary lang: English
.
Category: math
.
Summary: Quasi-homogeneity of copulas is introduced and studied. Quasi-homogeneous copulas are characterized by the convexity and strict monotonicity of their diagonal sections. As a by-product, a new construction method for copulas when only their diagonal section is known is given. (English)
Keyword: copula
Keyword: diagonal section
Keyword: quasi-homogeneity
MSC: 62E10
MSC: 62H05
idZBL: Zbl 1196.62058
idMR: MR2488902
.
Date available: 2009-09-24T20:39:53Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135888
.
Reference: [1] Aczél J.: Lectures on Functional Equations and Their Applications (Math.Sci. Engrg., Vol. 19). Academic Press, New York 1966 MR 0208210
Reference: [2] Alsina C., Frank M. J., Schweizer B.: Associative Functions.Triangular Norms and Copulas. World Scientific Publishing, Singapore 2006 Zbl 1100.39023, MR 2222258
Reference: [3] Bertino S.: Sulla dissomiglianza tra mutabili cicliche.Metron 35 (1977), 53–88 Zbl 0437.62026
Reference: [4] Baets B. De, Meyer, H. De, Mesiar R.: Asymmetric semilinear copulas.Kybernetika 43 (2007), 221–233 Zbl 1136.62350, MR 2343397
Reference: [5] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Copulas with given diagonal sections: Novel constructions and applications.Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007), 397–410 Zbl 1158.62324, MR 2362234, 10.1142/S0218488507004753
Reference: [6] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Semilinear copulas.Fuzzy Sets and Systems 159 (2008), 63–76 MR 2371303
Reference: [7] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section.Soft Computing 10 (2006), 490–494 Zbl 1098.60016, 10.1007/s00500-005-0523-7
Reference: [8] Durante F., Sempi C.: Semicopulae.Kybernetika 41 (2005), 315–328 MR 2181421
Reference: [9] Ebanks B. R.: Quasi-homogeneous associative functions.Internat. J. Math. Math. Sci. 21 (1998), 351–358 Zbl 0899.39003, MR 1609715, 10.1155/S0161171298000489
Reference: [10] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections.In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1977, pp. 129–136 MR 1614666
Reference: [11] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas.In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez Lallena, eds.), Kluwer, Dordrecht 2002, pp. 81–91 Zbl 1135.62334, MR 2058982
Reference: [12] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 MR 1703371, 10.1006/jmva.1998.1809
Reference: [13] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators.Kybernetika 41 (2005), 329–348 MR 2181422
Reference: [14] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [15] Nelsen R. B.: An Introduction to Copulas.Second edition (Springer Series in Statistics). Springer-Verlag, New York 2006 Zbl 1152.62030, MR 2197664
.

Files

Files Size Format View
Kybernetika_44-2008-6_2.pdf 923.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo