Previous |  Up |  Next

Article

Title: Dynamic dependence ordering for Archimedean copulas and distorted copulas (English)
Author: Charpentier, Arthur
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 6
Year: 2008
Pages: 777-794
Summary lang: English
.
Category: math
.
Summary: This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i.\,e. given remaining lifetimes $\boldsymbol{X}$, to compare the dependence of $\boldsymbol{X}$ given $\boldsymbol{X}>t$, and $\boldsymbol{X}$ given $\boldsymbol{X}>s$, where $s>t$. More precisely, analytical results will be obtained in the case the survival copula of $\boldsymbol{X}$ is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details. (English)
Keyword: Archimedean copulas
Keyword: Cox model
Keyword: dependence
Keyword: distorted copulas
Keyword: ordering
MSC: 60A05
MSC: 60E15
MSC: 62H05
MSC: 62N01
MSC: 62N99
MSC: 91B30
idZBL: Zbl 1196.62054
idMR: MR2488904
.
Date available: 2009-09-24T20:40:09Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135890
.
Reference: [1] Ali M., Mikhail, N., Haq N. S.: A class of bivariate distribution including the bivariate logistic given margins.J. Multivariate Anal. 8 (1978), 405–412 MR 0512610, 10.1016/0047-259X(78)90063-5
Reference: [2] Bandeen-Roche K. J., Liang K. Y.: Modeling failure-time associations in data with multiple levels of clustering.Biometrika 83 (1996), 29–39 MR 1399153, 10.1093/biomet/83.1.29
Reference: [3] Charpentier J., Juri A.: Limiting dependence structures for tail events, with applications to credit derivatives.J. Appl. Probab. 44 (2006), 563–586 Zbl 1117.62049, MR 2248584, 10.1239/jap/1152413742
Reference: [4] Charpentier A., Segers J.: Lower tail dependence for Archimedean copulas: Characterizations and pitfalls.Insurance Math. Econom. 40 (2007), 525–532 Zbl 1183.62086, MR 2311548, 10.1016/j.insmatheco.2006.08.004
Reference: [5] Charpentier A., Segers J.: Convergence of Archimedean copulas.Prob. Statist. Lett. 78 (2008), 412–419 Zbl 1139.62303, MR 2396414, 10.1016/j.spl.2007.07.014
Reference: [6] Charpentier A., Segers J.: Tails of Archimedean copulas.Submitted
Reference: [7] Clayton D. G.: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence.Biometrika 65 (1978), 141–151 Zbl 0394.92021, MR 0501698, 10.1093/biomet/65.1.141
Reference: [8] Colangelo A., Scarsini, M., Shaked M.: Some positive dependence stochastic orders.J. Multivariate Anal. 97 (2006), 46–78 Zbl 1086.62009, MR 2208843, 10.1016/j.jmva.2004.11.006
Reference: [9] Cooper R.: A note on certain inequalities.J. London Math. Soc. 2 (1927), 159–163 MR 1574413, 10.1112/jlms/s1-2.3.159
Reference: [10] Cooper R.: The converse of the Cauchy–Holder inequality and the solutions of the inequality $g(x + y) \le g(x) + g(y)$.Proc. London Math. Soc. 2 (1927), 415–432 MR 1576944
Reference: [11] Durante F., Sempi C.: Copula and semicopula transforms.Internat. J. Math. Math. Sci. 4 (2005), 645–655 Zbl 1078.62055, MR 2172400, 10.1155/IJMMS.2005.645
Reference: [12] Durante F., Foschi, F., Spizzichino F.: Threshold copulas and positive dependence.Statist. Probab. Lett., to appear Zbl 1148.62032, MR 2474379
Reference: [13] Feller W.: An Introduction to Probability Theory and Its Applications.Volume 2. Wiley, New York 1971 Zbl 0598.60003, MR 0270403
Reference: [14] Geluk J. L., Vries C. G. de: Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities.Insurance Math. Econom. 38 (2006), 39–56 Zbl 1112.62011, MR 2197302, 10.1016/j.insmatheco.2005.06.010
Reference: [15] Genest C.: The joy of copulas: bivariate distributions with uniform marginals.Amer. Statist. 40 (1086), 4, 280–283 MR 0866908
Reference: [16] Genest C., MacKay R. J.: Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données.La revue canadienne de statistique 14 (1986), 145–159 Zbl 0605.62049, MR 0849869
Reference: [17] Genest C., Rivest L. P.: On the multivariate probability integral transformation.Statist. Probab. Lett. 53 (2001), 391–399 Zbl 0982.62056, MR 1856163, 10.1016/S0167-7152(01)00047-5
Reference: [18] Gumbel E. J.: Bivariate logistic distributions.J. Amer. Statist. Assoc. 56 (1961), 335–349 Zbl 0099.14502, MR 0158451, 10.1080/01621459.1961.10482117
Reference: [19] Joe H.: Multivariate Models and Dependence Concepts.Chapman&Hall, London 1997 Zbl 0990.62517, MR 1462613
Reference: [20] Junker M., Szimayer, S., Wagner N.: Nonlinear term structure dependence: Copula functions, empirics, and risk implications.J. Banking & Finance 30 (2006), 1171–1199 10.1016/j.jbankfin.2005.05.014
Reference: [21] Juri A., Wüthrich M. V.: Copula convergence theorems for tail events.Insurance Math. Econom. 30 (2002), 411–427 Zbl 1039.62043, MR 1921115, 10.1016/S0167-6687(02)00121-X
Reference: [22] Juri A., Wüthrich M. V.: Tail dependence from a distributional point of view.Extremes 6 (2003), 213–246 Zbl 1049.62055, MR 2081852, 10.1023/B:EXTR.0000031180.93684.85
Reference: [23] Klement E. P., Mesiar, R., Pap E.: Transformations of copulas.Kybernetika 41 (2005), 425–434 MR 2180355
Reference: [24] Lehmann E. L.: Some concepts of dependence.Ann. Math. Statist. 37 (1966), 1137–1153 Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260
Reference: [25] Ling C. M.: Representation of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
Reference: [26] McNeil A. J., Neslehova J.: Multivariate Archimedean copulas, D-monotone functions and L1-norm symmetric distributions.Ann. Statist. To appear
Reference: [27] Morillas P. M.: A method to obtain new copulas from a given one.Metrika 61 (2005), 169–184 Zbl 1079.62056, MR 2159414, 10.1007/s001840400330
Reference: [28] Nelsen R.: An Introduction to Copulas.Springer, New York 1999 Zbl 1152.62030, MR 1653203
Reference: [29] Oakes D.: Bivariate survival models induced by frailties.J. Amer. Statist. Assoc. 84 (1989), 487–493 Zbl 0677.62094, MR 1010337, 10.1080/01621459.1989.10478795
Reference: [30] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North-Holland, Amsterdam 1959 Zbl 0546.60010, MR 0790314
Reference: [31] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. de l’Institut de Statistique de l’Université de Paris 8 (1959), 229–231 MR 0125600
Reference: [32] Wang S., Nelsen, R., Valdez E. A.: Distortion of multivariate distributions: adjustment for uncertainty in aggregating risks.Mimeo 2005
Reference: [33] Zheng M., Klein J. P.: Estimates of marginal survival for dependent competing risks based on an assumed copula.Biometrika 82 (1995), 127–138 Zbl 0823.62099, MR 1332844, 10.1093/biomet/82.1.127
.

Files

Files Size Format View
Kybernetika_44-2008-6_4.pdf 1.039Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo