Title:
|
Symmetries of random discrete copulas (English) |
Author:
|
Erdely, Arturo |
Author:
|
González–Barrios, José M. |
Author:
|
Nelsen, Roger B. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
44 |
Issue:
|
6 |
Year:
|
2008 |
Pages:
|
846-863 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we analyze some properties of the discrete copulas in terms of permutations. We observe the connection between discrete copulas and the empirical copulas, and then we analyze a statistic that indicates when the discrete copula is symmetric and obtain its main statistical properties under independence. The results obtained are useful in designing a nonparametric test for symmetry of copulas. (English) |
Keyword:
|
discrete copulas |
Keyword:
|
r-symmetric permutations |
Keyword:
|
independence |
MSC:
|
60C05 |
MSC:
|
62E15 |
MSC:
|
62H05 |
idZBL:
|
Zbl 1206.62099 |
idMR:
|
MR2488911 |
. |
Date available:
|
2009-09-24T20:40:51Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135895 |
. |
Reference:
|
[1] Aguiló I., Suñer, J., Torrens J.: Matrix representation of discrete quasi-copulas.Fuzzy Sets and Systems 159 (2008), 1658–1672 MR 2419976, 10.1016/j.fss.2007.10.004 |
Reference:
|
[2] Alsina C., Frank, M. J, Schweizer B.: Associative Functions: Triangular Norms and Copulas.World Scientific Publishing Co., Singapore 2006 Zbl 1100.39023, MR 2222258 |
Reference:
|
[3] Deheuvels P.: La fonction de dépendance empirique et ses propriétés.Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292 Zbl 0422.62037, MR 0573609 |
Reference:
|
[4] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096 |
Reference:
|
[5] Klement E. P., Mesiar R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms.Elsevier, Amsterdam 2005 Zbl 1063.03003, MR 2166082 |
Reference:
|
[6] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.: Discrete copulas.IEEE Trans. Fuzzy Systems. 14 (2006), 698–705 10.1109/TFUZZ.2006.880003 |
Reference:
|
[7] Kolesárová A., Mordelová J.: Quasi-copulas and copulas on a discrete scale.Soft Computing 10 (2006), 495–501 Zbl 1096.60012, 10.1007/s00500-005-0524-6 |
Reference:
|
[8] Mayor G., Suñer, J., Torrens J.: Copula-like operations on finite settings.IEEE Trans. Fuzzy Systems 13 (2005), 468–477 10.1109/TFUZZ.2004.840129 |
Reference:
|
[9] Mayor G., Suñer, J., Torrens J.: Sklar’s Theorem in finite settings.IEEE Trans. Fuzzy Systems 15 (2007), 410–416 10.1109/TFUZZ.2006.882462 |
Reference:
|
[10] Mesiar R.: Discrete copulas – what they are.In: Joint EUSFLAT-LFA 2005, Conference Proceedings (E. Montseny and P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930 |
Reference:
|
[11] Miller W.: The maximum order of an element of a finite symmetric group.Amer. Math. Monthly 94 (1987), 6, 497–506 Zbl 1191.11027, MR 0935414, 10.2307/2322839 |
Reference:
|
[12] Nelsen R. B.: An Introduction to Copulas.Second edition. Springer, New York 2006 Zbl 1152.62030, MR 2197664 |
Reference:
|
[13] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North-Holland, New York 1983 Zbl 0546.60010, MR 0790314 |
Reference:
|
[14] Skiena S.: The cycle structure of permutations.In: Implementing Discrete Mathematics: Combinatorial and Graph Theory with Mathematica. Addison-Wesley, Reading, MA 1990, pp. 20–24 MR 1061378 |
. |