Previous |  Up |  Next

Article

Title: Coloring of graphs by partitioning (English)
Author: Plesník, Ján
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 30
Issue: 2
Year: 1980
Pages: 121-126
.
Category: math
.
MSC: 05C15
MSC: 05C70
idZBL: Zbl 0438.05029
idMR: MR587236
.
Date available: 2009-09-25T09:06:06Z
Last updated: 2012-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/136234
.
Reference: [1] APPEL K., HAKEN W.: Every planar map is four colorable.Bull Amer. Math. Soc., 82, 1976, 711-712. Zbl 0331.05106, MR 0424602
Reference: [2] BONDY J. A.: Bounds for the chromatic number of a graph.J. Comb. Theory, 7, 1969,96-98. Zbl 0182.57802, MR 0241320
Reference: [3] CHARTRAND G., POLIMENI A. D.: Ramsey theory and chromatic numbers.Pacific J. Math., 55, 1974, 39-43. Zbl 0284.05107, MR 0371707
Reference: [4] ERSHOV A. P., KOZHUKHIN G. I.: Estimates of the chromatic number of a connected graph.(Russian) Dokl. akad. nauk SSSR 142, 1962, 270-273. Soviet. Math. Dokl., 3, 1962, 50-53. MR 0140445
Reference: [5] GAREY M. R., JOHNSON D. S.: The complexity of near-optimal graph coloring.J. ACM 23, 1976, 43-49. Zbl 0322.05111, MR 0426496
Reference: [6] HARARY F.: Graph theory.Addison-Wesley, Reading, Mass., 1969. Zbl 0196.27202, MR 0256911
Reference: [7] HARARY F., HSU D., MILLER Z.: The biparticity of a graph.J. Graph Theory, 1, 1977, 131-133. Zbl 0376.05043, MR 0444523
Reference: [8] HOFFMAN, A J.: On eigenvalues and coloring of graphs.In: Graph theory and its applications, (B. Harris, ed.), Academic Press, New York 1970, 79-91. MR 0284373
Reference: [9] JOHNSON D. S.: Worst case behavior of graph coloring algorithms.In: Proc. of the Fifth south-eastern Conf. on Combinatorics, Graph theory, and Computing, Utilitas Mathematica Publishing, Winnipeg, Canada 1974, 513-528. Zbl 0308.05109, MR 0389644
Reference: [10] KARP R. M.: Reducibility among combinatorial problems.In: Complexity of computer computation (R. E. Miller and J, W. Thatcher, eds.) Plenum Press, New York 1972, 85-103. MR 0378476
Reference: [11] KING T., NEMHAUSER G. L.: Some inequalities on the chromatic number of a graph.Discrete Math., 10, 1974, 117-121. Zbl 0311.05111, MR 0349459
Reference: [12] LAWLER E. L.: A note on the complexity of the chromatic number problem.Infor. Processing Letters 5, 1976, 66-67. Zbl 0336.68021, MR 0464675
Reference: [13] MATULA D. W.: k-components, clusters, and slicings in graphs.SIAM J. appl. Math., 22, 1972, 459-480. MR 0306051
Reference: [14] MATULA D. M., MARBLE G., ISAACSON J. D.: Graph coloring algorithms.In: Graph theory and Computing (R. C. Read, ed.), Academic Press, New York 1972, 109-122. Zbl 0256.05108, MR 0351880
Reference: [15] MITCHEM J.: On various algorithms for estimating the chromatic number of a graph.Computer J., 10, 1976, 182-183. Zbl 0334.05104, MR 0437376
Reference: [16] MYERS B. R., LIU R. W.: A lower bound on the chromatic number of a graph.Networks, 1, 1972, 273-277. Zbl 0233.05105, MR 0297628
Reference: [17] ORE O.: The four color problem.Academic Press, New York 1967, Zbl 0149.21101, MR 0216979
Reference: [18] PLESNÍK J.: Bounds on chromatic numbers of multiple factors of a complete graph.J, Graph Theory, 2, 1978, 9-17. Zbl 0375.05027, MR 0486179
Reference: [19] SCHURGER K.: Inequalities for the chromatic numbers of graphs.J. Comb. Theory (B), 16, 1974, 77-85. MR 0332548
Reference: [20] VIZING V. G.: On an estimate of the chromatic class of a p-graph.(Russian). Diskret. Analiz, 3, 1964, 25-30. MR 0180505
Reference: [21] WILF H. S.: The eingevalues of a graph and its chromatic number.J. London Math. Soc., 42, 1967, 330-332. MR 0207593
Reference: [22] ZYKOV, A A.: On some properties of linear complexes.(Russian). Math. Sborník, 24 (66), 1949, 161-188. Amer. Math. Soc. Transl., No. 79, 1952. MR 0051516
.

Files

Files Size Format View
MathSlov_30-1980-2_3.pdf 395.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo