Previous |  Up |  Next

Article

Title: Irreducible polynomials over finite fields with linearly independent roots (English)
Author: Schwarz, Štefan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 38
Issue: 2
Year: 1988
Pages: 147-158
.
Category: math
.
MSC: 11T06
MSC: 12F05
idZBL: Zbl 0653.12012
idMR: MR945368
.
Date available: 2009-09-25T10:08:04Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136468
.
Reference: [1] CONWAY J. H.: A tabulation of some information concerning finite fields.Computers in Mathematical Research, North-Holland, Amsterdam, 1968, 37-50. Zbl 0186.07602, MR 0237467
Reference: [2] LIDL R., NIEDERREITER H.: Finite Fields.Addison-Wesley Publ. Comp., Reading, Mass., 1983. Zbl 0554.12010, MR 0746963
Reference: [3] ORE O.: Contributions to the theory of finite fields.Trans. Amer. Mat. Soc. 36, 1934, 243-274. Zbl 0009.10003, MR 1501740
Reference: [4] PEI D. Y., WANG C. C., OMURA J. K.: Normal basis offinite field GF(2m).IEEE Trans. on Inform. Theory, IT-32, 1986, 285-287. MR 0838417
Reference: [5] PERLIS S.: Normal bases of cyclic fields of prime-power degree.Duke Math. J. 9, 1942, 507-517. MR 0007005
Reference: [6] PETERSON W. W., WELDON E. J.: Error-Correcting Codes.M.I.T. Press, Cambridge, Mass., 1972. Zbl 0251.94007, MR 0347444
Reference: [7] SCHWARZ Š.: On the reducibility of binomial congruences and the bound of the least integer belonging to a given exponent (mod p).Časop. pěst. mat. fys. 74, 1949, 1-16. MR 0032669
Reference: [8] SCHWARZ Š.: On the reducibility of polynomials over a finite field.Quart. J. of Math. Oxford (2), 7, 1956, 110-124. Zbl 0071.01703, MR 0096679
Reference: [9] SCHWARZ Š.: Construction of normal bases in cyclic extensions of a field.(To appear in the Czech. Math. J.) Zbl 0671.12006, MR 0946299
.

Files

Files Size Format View
MathSlov_38-1988-2_7.pdf 575.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo