Previous |  Up |  Next

Article

Title: Antineighbourhood graphs (English)
Author: Topp, Jerzy
Author: Volkmann, Lutz
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 2
Year: 1992
Pages: 153-171
.
Category: math
.
MSC: 05C75
idZBL: Zbl 0759.05084
idMR: MR1170100
.
Date available: 2009-09-25T10:36:58Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136546
.
Reference: [1] BEINEKE L. W.: Characterizations of derived graphs.J. Combin. Theory 9 (1970), 129-135. Zbl 0202.55702, MR 0262097
Reference: [2] BIELAK H.: On j-neighbourhoods in simple graphs.In: Graphs and Other Combinatorial Topics, vol. 59, Teubneг-Texte zur Mathematik, 1983, pp. 7-11. Zbl 0536.05058, MR 0737008
Reference: [3] BIELAK H.: On graphs with non-isomorphic 2-neighbourhoods.Časopis Pěst. Mat. 108 (1983), 294-298. Zbl 0526.05056, MR 0716415
Reference: [4] BLASS A., HARARY F., MILLER Z.: Which trees are link graphs.J. Combin. Theory B 29 (1980), 277-292. Zbl 0448.05028, MR 0602420
Reference: [5] BLOKHUIS A., BROUWER A. E., BUSET D., COHEN A. M.: The locally icosahedral graphs.Lecture Notes in Pure and Appl. Math., vol. 103, 1985, pp. 19-22. Zbl 0587.05059, MR 0826792
Reference: [6] BOESCH F., TINDELL R.: Circulants and their connectivities.J. Graph Theory 8 (1984), 487-499. Zbl 0549.05048, MR 0766498
Reference: [7] BROWN M., CONNELLY R.: On graphs with a constant link. I.In: New Directions in the Theoгy of Gгaphs, Academic Press, 1973, pp. 19-51.. MR 0347685
Reference: [8] BROWN M., CONNELLY R.: On graphs with a constant link. II..Discrete Math. 11 (1975), 199-232. Zbl 0304.05102, MR 0364016
Reference: [9] BULITKO V. K.: On graphs with given vertex-neighbourhoods.Trudy Mat. Inst. Steklov. 133 (1973), 78-94. MR 0434882
Reference: [10] BURNS D., KAPOOR S. F., OSTRAND P. A.: On line-symmetric graphs.Fund. Math. 122 (1984), 1-21. Zbl 0547.05053, MR 0753009
Reference: [11] BUSET D.: Graphs which are locally a cube.Discrete Math. 46 (1983), 221-226. Zbl 0532.05050, MR 0716442
Reference: [12] CHILTON B. L., GOULD R., POLIMENI A. D.: A note on graphs whose neighborhoods are n-cycles.Geom. Dedicata 3 (1974), 289-294. Zbl 0325.05116, MR 0357220
Reference: [13] CRUYCE, VANDENP.: A fìnite graph which is locally a dodecahedron.Discrete Math. 54 (1985), 343-346. Zbl 0571.05047, MR 0790596
Reference: [14] DOYEN J., HUBAUT X., REYNART M.: Finite graphs with isomorphic neighbourhoods.In: Problèmes Combinaíoires et Théorie des Graphes (Colloq. Orsay 1976), CNRS, Paris, 1978, p. 111.
Reference: [15] GODSIL C. D.: Neighbourhoods of transitive graphs and GRR's.J. Combiп. Theory B 29 (1980), 116-140. Zbl 0443.05047, MR 0584165
Reference: [16] GODSIL C. D., MCKAY B. D.: Graphs with regular neighbourhoods.Lecture Notes in Math. 829, 1980, pp. 127-140.. Zbl 0453.05052, MR 0611188
Reference: [17] HALL J. I.: Locally Petersen graphs.J. Graph Theoгy 4 (1980), 173-187. Zbl 0407.05041, MR 0570352
Reference: [18] HALL J. I.: Graphs with constant link and small degree or order.J. Graph Theory 8 (1985), 419-444. Zbl 0582.05049, MR 0812408
Reference: [19] HARARY F.: Graph Theory..Addison-Wesley, Reading, Mass., 1969. Zbl 0196.27202, MR 0256911
Reference: [20] HARARY F. PALMER E.: A note on similar points and similar lines of a graph.Rev. Roumaine Math. Pures Appl. 10 (1965), 1489-1492. MR 0197346
Reference: [21] HELL P.: Graphs with given neighbourhoods I.In: Problèmes Combinatoires et Théorie des Graphes (Colloq. Orsay 1976), ONRS, Paris, 1978, pp. 219-223. MR 0539979
Reference: [22] HELL P., LEVINSON H. WATKINS M.: Some remarks on transitive realizations of graphs.In: Proc. 2nd Carrib. Conf. on Combinatorics and Computing, Barbados, 1977, pp. 1-8.
Reference: [23] MOKAY B. D.: Transitive graphs with fewer than twenty vertices.Math. Comp. 33 (1977), 1101-1121. MR 0528064
Reference: [24] RYJÀČEK Z.: On graphs with isomorphic, nonisomorphic and connected N2 -neighbourhoods.Časopis Pěst. Mat. 112 (1987), 66-79. MR 0880933
Reference: [25] RYJÁČEK Z.: Graphs with nonisomorphic vertex neighbourhoods of the first and second types.Časopis Pӗst. Mat. 112 (1987), 390-394. MR 0921329
Reference: [26] SEDLÁČEK J.: On local properties of finite graphs.Časopis Pěst. Mat. 106 (1981), 290-298. MR 0629727
Reference: [27] SEDLÁČEK J.: On local properties of finite graphs.Lecture Notes in Math. 1018, 1983, pp. 242-247. Zbl 0531.05056, MR 0730654
Reference: [28] SEDLÁČEK J.: Finite graphs with distinct neighbourhoods.Teubner-Texte Math. 73 (1985), 152-156. MR 0869457
Reference: [29] TURNER J.: Point-symmetric graphs with a prime number of points.J. Combin. Theory 3 (1967), 136-145. Zbl 0161.20803, MR 0211908
Reference: [30] VOGLER W.: Graphs with given group and given constant link.J. Graph Theoгy 8 (1984), 111-115. Zbl 0534.05035, MR 0732024
Reference: [31] VOGLER W.: Representing groups by graphs with constant link and hypergraphs.J. Graph Theory 10 (1986), 461-475. Zbl 0632.05034, MR 0867211
Reference: [32] WINKLER P. M.: Existence of graphs wiгth a given set of r-neighbourhoods.J. Combin. Theory Ser. B 34 (1983), 165-176. MR 0703601
Reference: [33] YAP H. P.: Some Topics in Graph Theory.London Mathematical Society, Lecture Note Series 108, Cambridge University Press, Cambridge, 1986. Zbl 0588.05002, MR 0866145
Reference: [34] ZELINKA B.: Graphs with prescribed neighbourhood graphs.Math. Slovaca 35 (1985), 195-197. Zbl 0579.05045, MR 0795015
Reference: [35] ZELINKA B.: Edge neighbourhood graphs.Czech. Math. J. 36 (111) (1986), 44-47. Zbl 0599.05054, MR 0822865
Reference: [36] ZELINKA B.: Disconnected neighbourhood graphs.Math. Slovaca 36 (1986), 109-110. Zbl 0603.05039, MR 0849700
Reference: [37] ZYKOV A. A.: Problem 30.In: Theory of Graphs and its Applications, Academia, Prague, 1964, pp. 164-165.
.

Files

Files Size Format View
MathSlov_42-1992-2_4.pdf 1.919Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo