Previous |  Up |  Next

Article

Title: Convexity of the orientor field and the solution set of a class of evolution inclusions (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 5
Year: 1993
Pages: 593-615
.
Category: math
.
MSC: 34A60
MSC: 34G20
MSC: 49J24
idZBL: Zbl 0799.34018
idMR: MR1273713
.
Date available: 2009-09-25T10:52:19Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136593
.
Reference: [1] AUBIN J.-P., EKELAND I.: Applied Nonlinear Analysis.Wiley, New York, 1984. Zbl 0641.47066, MR 0749753
Reference: [2] BARBU V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing.Leiden, 1976. MR 0390843
Reference: [3] BISMUT J.-M.: Integrales convexes et probabilités.J. Math. Anal. Appl. 42 (1973), 639-673. Zbl 0268.60003, MR 0324734
Reference: [4] CELLINA A., ORNELAS A.: Convexity and the closure of the solution set to differential inclusions.Boll. Un. Mat. Ital. B 4 (1990), 255-263. Zbl 0719.34031, MR 1061215
Reference: [5] DeBLASI F.-MYJAK J.: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9-31. MR 0834135
Reference: [6] DIESTEL J., UHL J. J.: Vector Measures.Math. Surveys Monographs 15, Amer. Math. Soc, Providence, RI, 1977. Zbl 0369.46039, MR 0453964
Reference: [7] FILIPPOV A.: Classical solutions of differential equations with multivalued right hand side.SIAM J. Control Optim. 5 (1967), 609-621. MR 0220995
Reference: [8] FRYSZKOWSKI A.: Continuous selections for a class of nonconvex multivalued maps.Studia Math. 76 (1983), 163-174. MR 0730018
Reference: [9] HEWITT E., STROMBERG K.: Real and Abstract Analysis.Graduate Texts in Math. Vol. 25. (3th edition), Springer, New York, 1975. Zbl 0307.28001, MR 0367121
Reference: [10] HIMMELBERG C.: Measaurable relations.Fund. Math. 87 (1975), 52-72. MR 0367142
Reference: [11] KANDILAKIS D., PAPAGEORGIOU N. S.: On the properties of the Aumann integral with applications to differential inclusions and control systems.Czechoslovak Math. J. 39 (1989), 1-15. Zbl 0677.28005, MR 0983479
Reference: [12] KLEIN E., THOMPSON A.: Theory of Correspondences.Wiley, New York, 1984. Zbl 0556.28012, MR 0752692
Reference: [13] NAGY E.: A theorem on compact embedding for functions with values in an infinite dimensional Hilbert space.Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 29 (1986), 243-245.
Reference: [14] PAPAGEORGIOU N. S.: Relaxation and existence of optimal controls for systems governed by evolution inclusions in separable Banach spaces.J. Optim. Theory Appl. 64 (1990), 573-594. MR 1043741
Reference: [15] PAPAGEORGIOU N. S.: Convergence theorems for Banach space valued integrable multifunction.Internat. J. Math. Math. Sci. 10 (1987), 433-442. MR 0896595
Reference: [16] PAPAGEORGIOU N. S.: Measurable multifunctions and their applications to convex integral functions.Internat. J. Math. Math. Sci. 12 (1987), 175-192. MR 0973087
Reference: [17] PAPAGEORGIOU N. S.: On measurable multifunctions with applications to random multivalued equations.Math. Japon. 32 (1987), 437-464. Zbl 0634.28005, MR 0914749
Reference: [18] PAPAGEORGIOU N. S.: On multivalued evolution and differential inclusions in Banach spaces.Comment. Math. Univ. St. Paul. 36 (1987), 21-39. MR 0892378
Reference: [19] PAPAGEORGIOU N. S.: Decomposable sets in the Lebesgue-Bochner spaces.Comment. Math. Univ. St. Paul. 37 (1988), 49-62. Zbl 0679.46032, MR 0942305
Reference: [20] PAPAGEORGIOU N. S.: On the theory of Banach's space valued integrable multifunctions. Part 1: Integration and conditional expectation.J. Multivariate Anal. 17 (1985), 185-206. MR 0808276
Reference: [21] ROCKAFELLAR R. T.: Weak compactness of level sets of integral functions.In: Proceedings of Troisiĕme Colloque d'Analyse Fonctionnelle (CBRM) (H. Garnir, ed.), Liege, Belgium, 1971. MR 0407678
Reference: [22] TANABE H.: Equations in Evolution.Pitman, London, 1979.
Reference: [23] WAGNER D.: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [24] ZEIDLER E.: Nonlinear Functional Analysis and its Applications II.Springer, New York, 1990. Zbl 0684.47029, MR 0816732
Reference: [25] FRANKOWSKA H.: A priori estimates for operational differential inclusions.J. Differential Equations 84 (1990), 100-128. Zbl 0715.49010, MR 1042661
Reference: [26] TOLSTONOGOV A.: On the properties of integral solutions with m-accertive operators.Soviet. Math. Notes 49 (1991), 119-131. MR 1135523
.

Files

Files Size Format View
MathSlov_43-1993-5_5.pdf 1.430Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo