Previous |  Up |  Next

Article

Title: Note to the Lagrange stability of excited pendulum type equations (English)
Author: Andres, Ján
Author: Staněk, Svatoslav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 5
Year: 1993
Pages: 617-630
.
Category: math
.
MSC: 34C15
MSC: 34D40
MSC: 70K20
idZBL: Zbl 0870.34056
idMR: MR1273714
.
Date available: 2009-09-25T10:52:28Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136594
.
Reference: [1] ANDRES J.: Note to the asymptotic behaviour of solutions of damped pendulum equations under forcing.J. Nonlin. Anal. T.M.A. 18 (1992), 705-712. Zbl 0763.34038, MR 1160114
Reference: [2] ANDRES J.: Lagrange stability of higher-order analogy of damped pendulum equations.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 106, Phys. 31 (1992), 154-159. Zbl 0823.70018
Reference: [3] ANDRES J.: Problem of Barbashin in the case of forcing.In: Qualit. Theory of Differential Equations (Szeged, 1988). Colloq. Math. Soc. János Bolyai 53, North-Holland, Amsterdam-New York, 1989, pp. 9-16. MR 1062630
Reference: [4] ANDRES J.-VLČEK V.: Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing.Rend. 1st. Mat. Univ. Trieste 21 (1989), 128-143. Zbl 0753.34020, MR 1142529
Reference: [5] BARBASHIN V. A.-TABUEVA E. A.: Dynamical Systems with Cylindrical Phase Space.(Russian), Nauka, Moscow, 1964.
Reference: [6] CHENCINER A.: Systèmes dynamiques differentiables.In: Encyclopedia Universalis, Universalia, Paris, 1978.
Reference: [7] COPPEL W. A.: Stability and Asymptotic Behavior of Differential Equations.D.C Heath, Boston, 1965. Zbl 0154.09301, MR 0190463
Reference: [8] D'HUMIÈRES D.-BEASLEY M. R.-HUBERMAN B. A.-LIBCHABER A.: Chaotic states and routes to chaos in the forced pendulum.Phys. Rev. A 26 (1982), 3483-3496.
Reference: [9] GREBOGI, C-NUSSE H. E.-OTT E.-YORKE J. A.: Basic sets: sets that determine the dimension of basin boundaries.In: Lecture Notes in Math. 1342, Springer, New York-Berlin, 1988, pp. 220-250. MR 0970558
Reference: [10] GUCKENHEIMER J.-HOLMES P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.Appl. Math. Sci. 42, Springer, New York-Berlin, 1984. MR 1139515
Reference: [11] LEONOV G. A.: On a problem of Barbashin.Vestnik Leningrad Univ. Math. 13 (1981), 293-297. MR 1279993
Reference: [12] MAWHIN J.: Periodic oscillations of forced pendulum-like equations.In: Lecture Notes in Math. 964, Springer, New York-Berlin, 1982. Zbl 0517.34029, MR 0693131
Reference: [13] MAWHIN J.: The forced pendulum: A paradigm for nonlinear analysis and dynamical systems.Exposition. Math. 6 (1988), 271-287. Zbl 0668.70028, MR 0949785
Reference: [14] MOSER J.: Stable and Random Motions in Dynamical Systems.Princeton Univ. Press and Univ. of Tokyo Press, Princeton, 1973. Zbl 0271.70009, MR 0442980
Reference: [15] ORTEGA R.: A counterexample for the damped pendulum equation.Bull. Roy. Acad. Sci. Belgique 73 (1987), 405-409. Zbl 0679.70022, MR 1026970
Reference: [16] ORTEGA R.: Topological degree and stability of periodic solutions for certain differential equations.J. London Math. Soc., (To appear). Zbl 0677.34042, MR 1087224
Reference: [17] PALMER K. J.: Exponential dichotomies and transversal homoclinic points.J. Differential Equations 55 (1984), 225-256. Zbl 0508.58035, MR 0764125
Reference: [18] PARK B. S., GREBOGI C., OTT E., YORKE J. A.: Scaling of fractal basin boundaries near intermittency transitions to chaos.Phys. Rev. A 40 (1989), 1576-1581. MR 1009327
Reference: [19] POPOV V. M.: Hyperstability of Control Systems.Springer, Berlin, 1973. Zbl 0276.93033, MR 0387749
Reference: [20] SANDERS J., VERHULST F.: Averaging Methods in Nonlinear Dynamical Systems.Appl. Math. Sci. 59, Springer, New York-Berlin, 1985. Zbl 0586.34040, MR 0810620
Reference: [21] SĘDZIWY S.: Boundedness of solutions of an n-th order nonlinear differential equation.Atti Accad. Naz. Lincei 64 (1978), 363-366. Zbl 0421.34040, MR 0551517
Reference: [22] SEIFERT G.: The asymptotic behaviour of solutions of pendulum type equations.Ann. of Math. 69 (1959), 75-87. MR 0100703
Reference: [23] SHAHGIL'DJAN V. V., LJAHOVKIN A. A.: Systems of Phase-Shift Automatic Frequency.(Russian), Control. Svjaz, Moscow, 1972.
Reference: [24] SWICK K. E.: Asymptotic behavior of the solutions of certain third order differential equations.SIAM J. Appl. Math. 19 (1970), 96-102. Zbl 0212.11403, MR 0267212
Reference: [25] TRICOMI F.: Integrazione di un'equazione differenziale presentatasi in elettrotecnia.Ann. R. Sc. Norm. Sup. di Pisa 2 (1933), 1-20. MR 1556692
Reference: [26] VORÁČEK J.: On the solution of certain non-linear differential equations of the third order.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 33 (1971), 147-156. Zbl 0287.34033, MR 0320455
Reference: [27] YOU J.: Invariant tori and Lagrange stability of pendulum-type equations.J. Differential Equations 85 (1990), 54-65. Zbl 0702.34047, MR 1052327
.

Files

Files Size Format View
MathSlov_43-1993-5_6.pdf 1.216Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo