Previous |  Up |  Next

Article

Title: Equivariant cohomology with local coefficients (English)
Author: Golasiński, Marek
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 47
Issue: 5
Year: 1997
Pages: 575-586
.
Category: math
.
MSC: 55N25
MSC: 55N91
MSC: 55S35
MSC: 57S10
idZBL: Zbl 0938.55010
idMR: MR1635240
.
Date available: 2009-09-25T11:26:52Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136714
.
Reference: [1] tom DIECK T.: Transformation Groups.Walter de Gruyter, Berlin, 1987. Zbl 0611.57002, MR 0889050
Reference: [2] ELMENDORF A. D.: Systems of fixed point set.Trans. Amer. Math. Soc. 277 (1983), 275-284. MR 0690052
Reference: [3] GOLASIŃSKI M.: An equivariant dual J. H. C. Whitehead Theorem.In: Colloq. Math. Soc. János Bolyai 55, North-Нolland, Amsterdam, 1989, pp. 283-288. MR 1244370
Reference: [4] ILLMAN S.: Equivariant Algebraic Topology Thesis.Pгinceton University, Princeton, N. J., 1972. MR 2622205
Reference: [5] ILLMAN S.: Equivariant singular homology and cohomology.Mem. Amer. Math. Soc. 156 (1975). Zbl 0297.55003, MR 0375286
Reference: [6] MATUMOTO T.: On G-CW complexes and a theorem of J. H. C. Whitehead.J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374. Zbl 0232.57031, MR 0345103
Reference: [7] MATUMOTO T.: Equivariant cohomology theories on G-CW complexes.Osaka J. Math. 10 (1973), 51-68. Zbl 0272.55013, MR 0343259
Reference: [8] MATUMOTO T.: A complement to the theory of G-CW complexes.Japan J. Math. 10 (1984), 353-374. Zbl 0594.57021, MR 0884424
Reference: [9] MOERDIJK I.-SVENSSON J. A.: A Shapiro lemma for diagrams of spaces with applications to equivariant topology.Compositio Math. 96 (1995), 249-282. Zbl 0853.55005, MR 1327146
Reference: [10] MOLLER J. M.: On equivariant function spaces.Pacific J. Math. 142 (1990), 103-119. MR 1038731
Reference: [11] PIACENZA R. J.: Homotopy theory of diagrams and CW-complexes over a category.Canad. J. Math. 43 (1991), 814-824. Zbl 0758.55015, MR 1127031
Reference: [12] QUILLEN D. G.: Homotopical Algebra.Lecture Notes in Math. 43, Springer-Verlag, Berlin, 1967. Zbl 0168.20903, MR 0223432
Reference: [13] SHITANDA Y.: Abstract homotopy theory and homotopy theory of functor category.Hiroshima Math. J. 19 (1989), 477-497. Zbl 0701.18010, MR 1035138
Reference: [14] WANER S.: Equivariant homotopy theory and Milnor's theorem.Trans. Amer. Math. Soc. 258 (1980), 351-368. Zbl 0444.55010, MR 0558178
Reference: [15] WILSON S. J.: Equivariant homology theories on G-complexes.Trans. Amer. Math. Soc. 212 (1975), 155-171. MR 0377859
Reference: [16] WHITEHEAD G. W.: Elements of Homotopy Theory.Springer-Verlag, Berlin, 1978. Zbl 0406.55001, MR 0516508
.

Files

Files Size Format View
MathSlov_47-1997-5_9.pdf 978.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo