Previous |  Up |  Next

Article

Title: Weak$^\ast$-norm sequentially continuous operators (English)
Author: Mohsen, Alimohammady
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 50
Issue: 3
Year: 2000
Pages: 357-363
.
Category: math
.
MSC: 46A32
MSC: 46B20
idZBL: Zbl 0992.46004
idMR: MR1775307
.
Date available: 2009-09-25T11:45:38Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136781
.
Reference: [1] BOMBAL F.: On (V*) sets and Pełczyński's property (V*).Glasgow Math. J. 32 (1990), 109-120. MR 1045091
Reference: [2] BOURGAIN J.: A note on the Lebesgue spaces of vector valued functions.Bull. Soc. Math. Belg. Sér. B 31 (1979), 45-47. Zbl 0434.46016, MR 0592659
Reference: [3] BOURGAIN J.-DIESTEL J.: Limited operators and strictly cosingularity.Math. Nachr. 119 (1984), 55-58. MR 0774176
Reference: [4] COLLINS H. S.-RUESS W.: Weak compactness in spaces of compact operators and of vector valued functions.Pacific J. Math. 106 (1983), 45-71. Zbl 0488.46057, MR 0694671
Reference: [5] DIESTEL J.: Sequences and Series in Banach Spaces.Grad. Texts in Math., Springer-Verlag, New York, 1984. MR 0737004
Reference: [6] DIESTEL J.-UHL, Jr.-J. J.: Vector Masures.Math. Surveys Monographs 15, Amer. Math. Soc, Providence, RI, 1977.
Reference: [7] DREWNOWSKI L.: On Banach spaces with the Gelfand-Phillips property.Math. Z. 193 (1986), 405-411. MR 0862887
Reference: [8] DREWNOWSKI L.-EMMANUELE G.: On Banach spaces with the Gelfand-Phillips property II.Rend. Circ. Mat. Palermo (2) 38 (1989), 377-391. Zbl 0689.46004, MR 1053378
Reference: [9] EMMANUELE G.: Banach spaces in which Dunford-Pettis sets a,re relatively compact.Arch. Math. (Basel) 58 (1992), 477-485. MR 1156580
Reference: [10] EMMANUELE G.: On complemented copies of c0 in spaces of operators II.Comment. Math. Univ. Carolin. 35 (1994), 259-261. MR 1286572
Reference: [11] EMMANUELE G.: On the reciprocal, Dunford-Pettis property in projective tensor products.Math. Proc. Cambridge Philos. Soc. 109 (1991), 161-166. Zbl 0752.46042, MR 1075128
Reference: [12] EMMANUELE G.: Remarks on the uncomplemented subspace W(E,F).J. Funct. Anal. 99 (1991), 125-130. Zbl 0769.46006, MR 1120917
Reference: [13] FEDER M.: On the non-existence of a projection onto the space of compact operators.Canad. Math. Bull. 25 (1962), 78-81. MR 0657655
Reference: [14] FERRANDO J. C.: Copies of c0 in certain vector valued function Banach spaces.Math. Scand. 77 (1995), 148-152. MR 1365911
Reference: [15] JOHNSON J.: Remarks on Banach spaces of compact operators.J. Funct. Anal. 32 (1979), 304-311. Zbl 0412.47024, MR 0538857
Reference: [16] KALTON N. J.: Spaces of compact operators.Math. Ann. 208 (1974), 267-278. Zbl 0266.47038, MR 0341154
Reference: [17] MENDOZA J.: Copies of classical sequence spaces in vector valued function Banach spaces.In: Lecture Notes in Pure and Appl. Math. 172, Dekker, New York, 1996, pp. 311-320. MR 1352238
Reference: [18] PELCZYNSKI A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 10 (1962), 641-648. Zbl 0107.32504, MR 0149295
Reference: [19] ROSENTHAL H. P.: On relatively disjoint families of measures, with some application to Banach space theory.Studia Math. 37 (1979), 13-36. MR 0270122
Reference: [20] RUESS W.-STEGALL C. P.: Extreme points in duals of operator spaces.Math. Ann. 261 (1980), 535-546. MR 0682665
Reference: [21] RYAN R. A.: Complemented copies of c0 in the space of compact operators.Proc. Roy. Irish Acad. Sect. A 91A (1991), 239-241. MR 1173375
Reference: [22] ZAFARANI J.: Grothendieck space of compact operators.Math. Nachr. 174 (1995), 317-322. MR 1349054
.

Files

Files Size Format View
MathSlov_50-2000-3_9.pdf 551.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo