[1] CHANG C. C.: 
Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. 
MR 0094302 | 
Zbl 0084.00704[2] DVUREČENSKIJ A.: 
Pseudo MV-algebras are intervals in l-groups. J. Aust Math. Soc. 72 (2002), 427-445. 
MR 1902211[3] DVUREČENSKIJ A.-VETTERLEIN T.: 
Pseudoeffect algebras. I. Basic properties; II. Group representations. Internat. J. Theoret. Phys. 40 (2001), 685-701; 703-726. 
MR 1831592[5] GEORGESCU G.-IORGULESCU A.: Pseudo MV algebras: A non-commutative extension of MV-algebras. In: The Proceeding of the Fourth International Symposium on Economic Informatics, 6-9 May, INFOREC Printing House, Bucharest, 1999, pp. 961-968.
[6] GLASS A. M. W.: 
Partially Ordered Groups. Series in Algebra 7, World Scientific, Singapore, 1999. 
MR 1791008 | 
Zbl 0933.06010[7] JAKUBÍK J.: 
Isometrics of lattice ordered groups. Czechoslovak Math. J. 30 (127) (1980), 142-152. 
MR 0565917[8] JAKUBÍK J.: 
On isometries of non-abelian lattice ordered groups. Math. Slovaca 31 (1981), 171-175. 
MR 0611629 | 
Zbl 0457.06014[9] JAKUBÍK J.: 
Direct product decomposition of MV-algebras. Czechoslovak Math. J. 44 (119) (1992), 725-739. 
MR 1295146[10] JAKUBÍK J.: 
Direct product decomposition of pseudo MV-algebras. Arch. Math. (Brno) 37 (2001), 131-142. 
MR 1838410[11] JAKUBÍK J.: 
On intervals and isometries of MV-algebras. Czechoslovak Math. J. 52 (127) (2002), 651-663. 
MR 1923269 | 
Zbl 1012.06013[13] JASEM M.: 
Weak isometries and direct decompositions of dually residuated lattice ordered semigroups. Math. Slovaca 43 (1993), 119-136. 
MR 1274597 | 
Zbl 0782.06012[14] JASEM M.: 
Weak isometries in partially ordered groups. Acta Math. Univ. Comenian. (N.S.) 63 (1994), 259-265. 
MR 1319446 | 
Zbl 0821.06016[15] JASEM M.: 
Weak isometries and direct decompositions of partially ordered groups groups. Tatra Mt. Math. Publ. 5 (1995), 131-142. 
MR 1384803[16] JASEM M.: 
Isometries in non-abelian multilattice groups. Math. Slovaca 46 (1996), 491-496. 
MR 1451037 | 
Zbl 0890.06012[17] KOVÁŘ T.: A general theory of dually residuated lattice ordered semigroups. Ph.D. Thesis, Palacky University, Olomouc 1996.
[18] KOVÁŘ T.: 
On (weak) zero-fixing isometries in dually residuated lattice-ordered semi-groups. Math. Slovaca 50 (2000), 123-125. 
MR 1763114[19] KÜHR J.: 
Pseudo BL-algebras and DRl-monoids. Math. Bohem. 128 (2003), 199-208. 
MR 1995573[20] KÜHR J.: 
Dually Residuated Lattice Ordered Monoids. Doctoral Thesis, Palacky University, Olomouc, 2003. 
Zbl 1141.06014[21] KÜHR J.: 
Prime ideals and polars in DRl-monoids and pseudo BL-algebras. Math. Slovaca 53 (2003), 233-246. 
MR 2025020[22] MUNDICI D.: 
Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Func. Anal. 65 (1986), 15-63. 
MR 0819173[23] RACHŮNEK J.: 
Isometries in ordered groups. Czechoslovak Math. J. 34(127) (1984), 334-341. 
MR 0743498 | 
Zbl 0558.06020[24] RACHŮNEK J.: 
DRl-semigroups and MV-algebras. Czechoslovak Math. J. 48(123) (1998), 365-372. 
MR 1624268 | 
Zbl 0952.06014[25] RACHŮNEK J.: 
$MV$-algebras are categorically equivalent to a class of $DR\ell_{l(i)}$-semi-groups. Math. Bohem. 123 (1998), 437-441. 
MR 1667115[26] RACHŮNEK J.: 
Non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (127) (2002), 255-273. 
MR 1905434 | 
Zbl 1012.06012[27] SWAMY K. L. M.: 
Isometries in autometrized lattice ordered groups. Algebra Universalis 8 (1978), 59-64. 
MR 0463074 | 
Zbl 0409.06007[28] SWAMY K. L. M.-SUBBA RAO B. V.: 
Isometries in dually residuated lattice ordered semigroups. Math. Sem. Notes Kobe Univ. 8 (1980), 369-379. 
MR 0601906[29] ŠALOUNOVÁ D.: 
Lex-ideals of $DR\ell$-monoids and GMV-algebras. Math. Slovaca 53 (2003), 321-330. 
MR 2025465 | 
Zbl 1072.06009