Previous |  Up |  Next

Article

Title: Modal operators on bounded commutative residuated $\ell $-monoids (English)
Author: Rachůnek, Jiří
Author: Šalounová, Dana
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 4
Year: 2007
Pages: [321]-332
.
Category: math
.
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1150.06016
idMR: MR2357828
.
Date available: 2009-09-25T14:39:03Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136958
.
Reference: [1] BALBES R.-DWINGER R.: Distributive Lattices.Univ. Missouri Press, Columbia, 1974. Zbl 0321.06012, MR 0373985
Reference: [2] BLOUNT K.-TSINAKIS C.: The structure of residuated lattices.Intеrnat. J. Algеbra Comput. 13 (2003), 437-461. Zbl 1048.06010, MR 2022118
Reference: [3] CIGNOLI R. L. O.-D'OТТAVIANO I. M. L.-MUNDICI D.: Algebraic Foundation of Many-valued Reasoning.Kluwеr Acad. Publ., Dordrecht-Boston-London, 2000. MR 1786097
Reference: [4] DVUREČENSKIJ A.-RACHŮNEK J.: Probabilistic averaging in bounded commutative residuated $\ell$-monoids.Discrete Math. 306 (2006), 1317-1326 Zbl 1105.06011, MR 2237716
Reference: [5] GALAТOS M.- ТSINAKIS C.: Generalized MV-algebras.J. Algеbra 283 (2005), 254-291. MR 2102083
Reference: [6] HÁJEK P.: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. Zbl 0937.03030, MR 1900263
Reference: [7] HARLENDEROVÁ M.-RACHŮNEK J.: Modal operators on MV-algebras.Math. Bohem. 131 (2006), 39-48. Zbl 1112.06014, MR 2211002
Reference: [8] JIPSEN P.-ТSINAKIS C.: A survey of residuated lattices.In: Ordеrеd Algеbraic Structurеs (J. Martinеz, еd.), Kluwеr Acad. Publ., Dordrеcht, 2002, pp. 19-56. Zbl 1070.06005, MR 2083033
Reference: [9] KÜHR J.: Dually Residuated Lattice-Ordered Monoids.Ph.D. Тhеsis, Palacký Univ. Olomouc, 2003. Zbl 1141.06014
Reference: [10] MACNAB D. S.: Modal operators on Heyting algebras.Algebra Universalis 12 (1981), 5-29. Zbl 0459.06005, MR 0608645
Reference: [11] RACHŮNEK J.: $DR\ell$-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365-372. MR 1624268
Reference: [12] RACHŮNEK J.: MV-algebras are categorically equivalent to a class of $DR\ell_{1(i)}-semi-groups.Math. Bohem. 123 (1998), 437-441. MR 1667115
Reference: [13] RACHŮNEK J.: A duality between algebras of basic logic and bounded representable $DR\ell$-monoids.Math. Bohem. 126 (2001), 561-569. MR 1970259
Reference: [14] RACHŮNEK J.-ŠALOUNOVÁ D.: Local bounded commutative residuated t-monoids.Czechoslovak Math. J. 57 (2007), 395-406 MR 2309973
Reference: [15] RACHŮNEK J.- SLEZÁK V.: Negation in bounded commutative DRl-monoids.Czechoslovak Math. J. 56 (2006), 755-763 MR 2291772
Reference: [16] SWAMY K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797
.

Files

Files Size Format View
MathSlov_57-2007-4_3.pdf 601.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo