Previous |  Up |  Next

Article

Title: Strongly almost convergent generalized difference sequences associated with multiplier sequences (English)
Author: Esi, Ayhan
Author: Tripathy, Binod Chandra
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 4
Year: 2007
Pages: [339]-348
.
Category: math
.
MSC: 40A05
MSC: 40C05
MSC: 46A45
idZBL: Zbl 1150.40001
idMR: MR2357830
.
Date available: 2009-09-25T14:39:19Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136960
.
Reference: [1] ET M.-COLAK R.: On generalized difference sequence spaces.Soochow J. Math. 21 (1995), 377-386. MR 1362304
Reference: [2] ET M.-ESI A.: On Köthe-Toeplitz duals of generalized difference sequence spaces.Bull. Malays. Math. Sci. Soc. (2) 23 (2000), 25-32. Zbl 1013.46500, MR 1815480
Reference: [3] ET M.-NURAY F.: $\Delta^m$-Statistical convergence.Indian J. Pure Appl. Math. 32 (2001), 961-969. Zbl 1241.54002, MR 1848005
Reference: [4] FAST H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. Zbl 0044.33605, MR 0048548
Reference: [5] FRIDY J. A.: On statistical convergence.Analysis (Munich) 5 (1985), 301-313. Zbl 0588.40001, MR 0816582
Reference: [6] FRIDY J. A.-ORHAN, C: Lacunary statistical summability.J. Math. Anal. Appl. 173 (1993), 497-504. Zbl 0786.40004, MR 1209334
Reference: [7] GOES G.-GOES S.: Sequences of bounded variation and sequences of Fourier coefficients.Math. Z. 118 (1970), 93-102. Zbl 0193.02903, MR 0438019
Reference: [8] KIZMAZ H.: On certain sequence spaces.Canad. Math. Bull. 24 (1981), 169-176. Zbl 0454.46010, MR 0619442
Reference: [9] LASCARIDES C. G.: A study of certain sequence spaces of Maddox and generalization of a theorem of Iyer.Pacific J. Math. 38 (1971), 487-500. MR 0306768
Reference: [10] MADDOX I. J.: Spaces of strongly summable sequences.Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355. Zbl 0156.06602, MR 0221143
Reference: [11] MADDOX I. J.: Elements of Functional Analysis.Cambridge University Press, Cambridge, 1970. Zbl 0193.08601, MR 0390692
Reference: [12] NAKANO H.: Modular sequence spaces.Proc. Japan Acad. Ser. A Math. Sci. 27 (1951), 508-512. MR 0047929
Reference: [13] NANDA S.: Strongly almost summable and strongly almost convergent sequences.Acta Math. Hungar. 49 (1987), 71-76. Zbl 0658.40008, MR 0869663
Reference: [14] RATH D.-TRIPATHY B. C.: Matrix maps on sequence spaces associated with sets of integers.Indian J. Pure Appl. Math. 27 1996), 197-206. Zbl 0843.47017, MR 1375143
Reference: [15] ŠALÁT T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. Zbl 0437.40003, MR 0587239
Reference: [16] SCHOENBERG I. J.: The integrability of certain functions and related summability methods.Amer. Math. Monthly 66 (1959), 361-375. Zbl 0089.04002, MR 0104946
Reference: [17] SIMONS S.: The spaces $\ell(p_\nu)$ and $m(p_\nu)$.Proc. London Math. Soc. 15 (1965), 422-436. MR 0176325
Reference: [18] TRIPATHY B. C.: Matrix trasformation between some classes of sequences.J. Math. Anal. Appl. 206 (1997), 448-450. MR 1433948
Reference: [19] TRIPATHY B. C.: On a class of difference sequences related to the p-normed space tp.Demonstratio Math. 36 (2003), 867-872. MR 2018706
Reference: [20] TRIPATHY B. C.: Generalized difference paranormed statistically convergent sequences defined by Orlicz functions in a locally convex space.Soochow J. Math. 30 (2004), 431-446. MR 2106062
Reference: [21] TRIPATHY B. C.-SEN M.: Vector valued paranormed bounded and null sequence spaces associated with multiplier sequences.Soochow J. Math. 29 (2003), 313-326. Zbl 1043.46013, MR 2003474
.

Files

Files Size Format View
MathSlov_57-2007-4_5.pdf 648.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo