Previous |  Up |  Next

Article

Title: Rate of approximation for the Bézier variant of Balazs-Kantorovich operators (English)
Author: Gupta, Vijay
Author: Zeng, X. M.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 4
Year: 2007
Pages: [349]-358
.
Category: math
.
MSC: 41A36
idZBL: Zbl 1150.41014
idMR: MR2357831
.
Date available: 2009-09-25T14:39:26Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136961
.
Reference: [1] AGRATINI O.: An approximation process of Kantorovich type.Math. Notes Miskolac 2 (2001), 3-10. Zbl 0981.41015, MR 1854433
Reference: [2] BALAZS K.: Approximation by Bernstein type rational functions.Acta Math. Acad. Sci. Hungar. 26 (1975), 123-134. Zbl 0307.41012, MR 0364958
Reference: [3] BALAZS C.-SZABADOS J.: Approximation by Bernstein type rational functions II.Acta Math. Acad. Sci. Hungar. 40 (1982), 331-337. Zbl 0531.41013, MR 0686333
Reference: [4] GUPTA V.: Rate of convergence of Durrmeyer type Baskakov-Bezier operators for locally bounded functions.Turkish J. Math. 28 (2004), 271-280. Zbl 1075.41014, MR 2095830
Reference: [5] GUPTA V.: Rate of convergence by the Bezier variant of Phillips operators for bounded variation functions.Taiwanese J. Math. 8 (2004), 183-190. MR 2061686
Reference: [6] GUPTA V.: The Bezier variant of Kantorovitch operators.Comput. Math. Appl. 47 (2004), 227-232. Zbl 1053.65098, MR 2047938
Reference: [7] GUPTA V.: Degree of approximation to function of bounded variation by Bézier variant of MKZ operators.J. Math. Anal. Appl. 289 (2004), 292-300. Zbl 1037.41013, MR 2020544
Reference: [8] GUPTA V.-ABEL U.: Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators.Int. J. Math. Math. Sci. 2004 (2004), 459-468. Zbl 1123.41013, MR 2048792
Reference: [9] GUPTA V.-MAHESHWARI, R: Bezier variant of a new Durrmeyer type operators.Riv. Mat. Univ. Parma 7 (2003), 9-21. Zbl 1050.41015, MR 2031837
Reference: [10] GUPTA V.-VASISHTHA V.-GUPTA M. K.: An estimate on the rate of convergence of Bezier type summation-integral operators.Kуungpook Math. J. 43 (2003), 345-354. Zbl 1050.41017, MR 2003479
Reference: [11] ZENG X. M.: Bounds for Bernstein basis functions and Meyer-Konig and Zeller basis functions.J. Math. Anal. Appl. 219 (1998), 364-376. MR 1606338
Reference: [12] ZENG X. M.-PIRIOU A.: On the rate of convergence of two Bernstein-Bezier type operators for functions of bounded variation.J. Approx. Theory 95 (1998), 369-387. MR 1657687
.

Files

Files Size Format View
MathSlov_57-2007-4_6.pdf 999.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo