[1] BAI Z. D.-CHENG P. E.:
Marcinkiewicz strong laws for linear statistics. Statist. Probab. Lett. 46 (2000), 105-112.
MR 1748864 |
Zbl 0960.60026
[2] BAXTER J.-JONES R.-LIN M.-OLSEN J.:
SLLN for weighted independent indentically distributed random variables. J. Theoret. Probab. 17 (2004), 165-181.
MR 2054584
[3] BRYC W.-SMOLENSKI W.:
Moment conditions for almost sure convergence of weakly correlated random variables. Proc. Amer. Math. Soc. 2 (1993), 629-635.
MR 1149969 |
Zbl 0785.60018
[4] CHOI B. D.-SUNG S. H.:
Almost sure convergence theorems of weighted sums of random variables. Stochastic Anal. Appl. 5 (1987), 365-377.
MR 0912863 |
Zbl 0633.60049
[5] CHOW Y. S.-TEICHER H.:
Probability Theory: Independence, Inter changeability, Martingales. (3rd ed.), Springer-Verlag, New York, 1997.
MR 1476912
[6] CUZICK J.:
A strong law for weighted sums of i.i.d. random variables. J. Theoret. Probab. 8 (1995), 625-641.
MR 1340830 |
Zbl 0833.60031
[7] ERDÖS P.:
On a theorem of Hsu-Robbins. Ann. Math. Statist. 20 (1949), 286-291.
MR 0030714
[8] HSU P. L.-ROBBINS H.:
Complete convergence and the law of larege numbers. Proc. Nat. Acad. Sci. (USA) 33 (1947), 25-31.
MR 0019852
[9] JOAG D. K.-PROSCHAN F.:
Negative associated of random variables with application. Ann. Statist. 11 (1983), 286-295.
MR 0684886
[10] PELIGRAD M.:
On the asymptotic normality of sequences of weak dependent random variables. J. Theoret. Probab. 9 (1996), 703-715.
MR 1400595 |
Zbl 0855.60021
[11] PELIGRAD M.:
Maximum of partial sums and an invariance principle for a class weak depend random variables. Proc. Amer. Math. Soc. 126 (1998), 1181-1189.
MR 1425136
[12] PELIGRAD M.-GUT A.:
Almost sure results for a class of dependent random variables. J. Theoret. Probab. 12 (1999), 87-104.
MR 1674972 |
Zbl 0928.60025
[13] PETROV V. V.:
Limit Theorems of Probability Theory Sequences of Independent Random Variables. Oxford Science Publications, Oxford, 1995.
MR 1353441 |
Zbl 0826.60001
[14] SHAO Q. M.:
A comparison theorem on moment inequalities between Negatively associated and independent random variables. J. Theoret. Probab. 13 (2000), 343-356.
MR 1777538 |
Zbl 0971.60015
[16] SUNG S. H.:
Strong laws for weighted sums of i.i.d. random variables. Statist. Probab. Lett. 52 (2001), 413-419.
MR 1841609 |
Zbl 1027.60028
[17] UTEV S.-PELIGRAD M.:
Maximal inequalities and an invariance principle for a class of weakly dependent random variables. J. Theoret. Probab. 16 (2003), 101-115.
MR 1956823 |
Zbl 1012.60022
[18] WU W. B.: On the strong convergence of a weighted sums. Statist. Probab. Lett 44 (1999), 19-22.