Previous |  Up |  Next

Article

Title: Strong laws of large numbers for weighted sums of $\overline \rho $-mixing random variables (English)
Author: Cai, Guang-hui
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 4
Year: 2007
Pages: [381]-388
.
Category: math
.
MSC: 60F15
idZBL: Zbl 1150.60009
idMR: MR2357834
.
Date available: 2009-09-25T14:39:48Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136964
.
Reference: [1] BAI Z. D.-CHENG P. E.: Marcinkiewicz strong laws for linear statistics.Statist. Probab. Lett. 46 (2000), 105-112. Zbl 0960.60026, MR 1748864
Reference: [2] BAXTER J.-JONES R.-LIN M.-OLSEN J.: SLLN for weighted independent indentically distributed random variables.J. Theoret. Probab. 17 (2004), 165-181. MR 2054584
Reference: [3] BRYC W.-SMOLENSKI W.: Moment conditions for almost sure convergence of weakly correlated random variables.Proc. Amer. Math. Soc. 2 (1993), 629-635. Zbl 0785.60018, MR 1149969
Reference: [4] CHOI B. D.-SUNG S. H.: Almost sure convergence theorems of weighted sums of random variables.Stochastic Anal. Appl. 5 (1987), 365-377. Zbl 0633.60049, MR 0912863
Reference: [5] CHOW Y. S.-TEICHER H.: Probability Theory: Independence, Inter changeability, Martingales.(3rd ed.), Springer-Verlag, New York, 1997. MR 1476912
Reference: [6] CUZICK J.: A strong law for weighted sums of i.i.d. random variables.J. Theoret. Probab. 8 (1995), 625-641. Zbl 0833.60031, MR 1340830
Reference: [7] ERDÖS P.: On a theorem of Hsu-Robbins.Ann. Math. Statist. 20 (1949), 286-291. MR 0030714
Reference: [8] HSU P. L.-ROBBINS H.: Complete convergence and the law of larege numbers.Proc. Nat. Acad. Sci. (USA) 33 (1947), 25-31. MR 0019852
Reference: [9] JOAG D. K.-PROSCHAN F.: Negative associated of random variables with application.Ann. Statist. 11 (1983), 286-295. MR 0684886
Reference: [10] PELIGRAD M.: On the asymptotic normality of sequences of weak dependent random variables.J. Theoret. Probab. 9 (1996), 703-715. Zbl 0855.60021, MR 1400595
Reference: [11] PELIGRAD M.: Maximum of partial sums and an invariance principle for a class weak depend random variables.Proc. Amer. Math. Soc. 126 (1998), 1181-1189. MR 1425136
Reference: [12] PELIGRAD M.-GUT A.: Almost sure results for a class of dependent random variables.J. Theoret. Probab. 12 (1999), 87-104. Zbl 0928.60025, MR 1674972
Reference: [13] PETROV V. V.: Limit Theorems of Probability Theory Sequences of Independent Random Variables.Oxford Science Publications, Oxford, 1995. Zbl 0826.60001, MR 1353441
Reference: [14] SHAO Q. M.: A comparison theorem on moment inequalities between Negatively associated and independent random variables.J. Theoret. Probab. 13 (2000), 343-356. Zbl 0971.60015, MR 1777538
Reference: [15] STOUT W.: Almost Sure Convergence.Academic Press, New York, 1974. Zbl 0321.60022, MR 0455094
Reference: [16] SUNG S. H.: Strong laws for weighted sums of i.i.d. random variables.Statist. Probab. Lett. 52 (2001), 413-419. Zbl 1027.60028, MR 1841609
Reference: [17] UTEV S.-PELIGRAD M.: Maximal inequalities and an invariance principle for a class of weakly dependent random variables.J. Theoret. Probab. 16 (2003), 101-115. Zbl 1012.60022, MR 1956823
Reference: [18] WU W. B.: On the strong convergence of a weighted sums.Statist. Probab. Lett 44 (1999), 19-22.
.

Files

Files Size Format View
MathSlov_57-2007-4_9.pdf 660.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo