Previous |  Up |  Next

Article

Title: On elementary moves that generate all spherical latin trades (English)
Author: Drápal, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 477-511
Summary lang: English
.
Category: math
.
Summary: We show how to generate all spherical latin trades by elementary moves from a base set. If the base set consists only of a single trade of size four and the moves are applied only to one of the mates, then three elementary moves are needed. If the base set consists of all bicyclic trades (indecomposable latin trades with only two rows) and the moves are applied to both mates, then one move suffices. Many statements of the paper pertain to all latin trades, not only to spherical ones. (English)
Keyword: latin trade
Keyword: spherical latin bi-trade
Keyword: planar Eulerian triangulation
MSC: 05B15
idZBL: Zbl 1200.05036
idMR: MR2583128
.
Date available: 2009-12-22T10:02:49Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137441
.
Reference: [1] Batagelj V.: An improved inductive definition of two restricted classes of triangulations of the plane.Combinatorics and graph theory (Warsaw 1987), 11--18, Banach Center Publ., 25, PWN, Warsaw, 1989. Zbl 0742.05033, MR 1097631
Reference: [2] Cavenagh N., Donovan D., Drápal A.: $3$-homogeneous latin trades.Discrete Math. 300 (2005), 57--70. MR 2170114, 10.1016/j.disc.2005.04.021
Reference: [3] Cavenagh N.J., Donovan D., Drápal A.: $4$-homogeneous latin trades.Australas. J. Combin. 32 (2005), 285--303. MR 2139816
Reference: [4] Cavenagh N.J., Hämäläinen C., Drápal A.: Latin bitrades derived from groups.Discrete Math. 308 (2008), 6189--6202. MR 2464907, 10.1016/j.disc.2007.11.041
Reference: [5] Cavenagh N.J., Lisoněk P.: Planar Eulerian triangulations are equivalent to spherical Latin bitrades.J. Combin. Theory Ser. A 115 (2008), 193--197. MR 2378864, 10.1016/j.jcta.2007.04.002
Reference: [6] Cavenagh N.J., Wanless I.M.: Latin trades in groups defined on planar triangulations.J. Algebr. Comb. (in print), DOI 10.1007/s10801-008-0165-9.
Reference: [7] Drápal A., Kepka T.: Exchangeable partial groupoids I.Acta Univ. Carolin. Math. Phys. 24 (1983), 57--72. MR 0733686
Reference: [8] Drápal A., Kepka T.: Group modifications of some partial groupoids.Ann. Discrete Math. 18 (1983), 319--332. MR 0695819
Reference: [9] Drápal A.: On a planar construction of quasigroups.Czechoslovak Math. J. 41 (1991), 538--548. MR 1117806
Reference: [10] Drápal A.: Latin Squares and Partial Groupoids.(in Czech), Candidate of Science Thesis, Charles University, Prague, 1988.
Reference: [11] Drápal A.: Hamming distances of groups and quasi-groups.Discrete Math. 235 (2001), 189--197. MR 1829848, 10.1016/S0012-365X(00)00272-7
Reference: [12] Drápal A.: Geometry of Latin Trades.manuscript circulated at the conference Loops'03, Prague, 2003.
Reference: [13] Drápal A.: Geometrical structure and construction of latin trades.Adv. Geom. 9 (2009), 311--348. MR 2537024, 10.1515/ADVGEOM.2009.018
Reference: [14] Drápal A., Hämäläinen C., Kala V.: Latin bitrades, dissections of equilateral triangles and abelian groups.J. Comb. Des. (in print), DOI 10.1002/jcd.20237.
Reference: [15] Drápal A., Lisoněk P.: Generating spherical Eulerian triangulations.Discrete Math.(to appear). MR 2592497
Reference: [16] Grannell M.J., Griggs T.S., Knor M.: Biembeddings of symmetric configurations and $3$-homogeneous Latin trades.Comment. Math. Univ. Carolin. 49 (2008), 411--420. MR 2490436
Reference: [17] Hämäläinen C.: Partitioning $3$-homogeneous latin bitrades.Geom. Dedicata 133 (2008), 181--193. MR 2390076, 10.1007/s10711-008-9242-4
Reference: [18] Heawood P.J.: On the four colour map theorem.Quart. J. 29 (1898), 270--285.
Reference: [19] Holton D.A., Manvel B., McKay B.D.: Hamiltonian cycles in cubic $3$-connected bipartite planar graphs.J. Combin. Theory Ser. B 38 (1985), 279--297. Zbl 0551.05052, MR 0796604, 10.1016/0095-8956(85)90072-3
Reference: [20] Keedwell A.D.: Critical sets in latin squares and related matters: an update.Util. Math. 65 (2004), 97--131. Zbl 1053.05019, MR 2048415
Reference: [21] Lefevre J., Cavenagh N.J., Donovan D., Drápal A.: Minimal and minimum size latin bitrades of each genus.Comment. Math. Univ. Carolin. 48 (2007), 189--203. MR 2338087
Reference: [22] Lefevre J.G., Donovan D., Drápal A.: Permutation representation of $3$ and $4$-homogenous latin bitrades.Fund. Inform. 84 (2008), 99--110. MR 2422431
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_1.pdf 444.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo