Title:
|
FC-modules with an application to cotorsion pairs (English) |
Author:
|
Guo, Yonghua |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
4 |
Year:
|
2009 |
Pages:
|
513-519 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a ring. A left $R$-module $M$ is called an FC-module if $M^{+}= \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is a flat right $R$-module. In this paper, some homological properties of FC-modules are given. Let $n$ be a nonnegative integer and $\mathcal{FC}_{n}$ the class of all left $R$-modules $M$ such that the flat dimension of $M^{+}$ is less than or equal to $n$. It is shown that $({^{\bot}(\mathcal{FC}_{n}^{\bot})}, \mathcal{FC}_{n}^{\bot})$ is a complete cotorsion pair and if $R$ is a ring such that $\operatorname{fd}(({_RR})^{+})\leq n$ and $\mathcal{FC}_{n}$ is closed under direct sums, then $(\mathcal{FC}_{n}, \mathcal{FC}_{n}^{\bot})$ is a perfect cotorsion pair. In particular, some known results are obtained as corollaries. (English) |
Keyword:
|
character modules |
Keyword:
|
flat modules |
Keyword:
|
cotorsion pairs |
MSC:
|
16D40 |
MSC:
|
16D80 |
MSC:
|
16E99 |
idZBL:
|
Zbl 1203.16008 |
idMR:
|
MR2583129 |
. |
Date available:
|
2009-12-22T08:03:19Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/137442 |
. |
Reference:
|
[1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.2nd ed., Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl 0765.16001, MR 1245487 |
Reference:
|
[2] Asensio Mayor J., Martinez Hernandez J.: Flat envelopes in commutative rings.Israel J. Math. 62 (1988), no. 1, 123--128. Zbl 0658.13010, MR 0947834, 10.1007/BF02767358 |
Reference:
|
[3] Asensio Mayor J., Martinez Hernandez J.: Monomorphic flat envelopes in commutative rings.Arch. Math. (Basel) 54 (1990), no. 5, 430--435. Zbl 0658.13010, MR 1049197, 10.1007/BF01188669 |
Reference:
|
[4] Cheatham T.J., Stone D.R.: Flat and projective character modules.Proc. Amer. Math. Soc. 81 (1981), no. 2, 175--177. Zbl 0458.16014, MR 0593450, 10.1090/S0002-9939-1981-0593450-2 |
Reference:
|
[5] Colby R.R.: Rings which have flat injective modules.J. Algebra 35 (1975), 239--252. Zbl 0306.16015, MR 0376763, 10.1016/0021-8693(75)90049-6 |
Reference:
|
[6] Couchot F.: Exemples d'anneaux auto-fp-injectifs.Comm. Algebra 10 (1982), no. 4, 339--360. Zbl 0484.16010, MR 0649340, 10.1080/00927878208822720 |
Reference:
|
[7] Ding N.Q., Chen J.L.: The flat dimensions of injective modules.Manuscripta Math. 78 (1993), 165--177. Zbl 0804.16005, MR 1202159, 10.1007/BF02599307 |
Reference:
|
[8] Eklof P.C., Trlifaj J.: How to make Ext vanish.Bull. London Math. Soc. 33 (2001), no. 1, 41--51. Zbl 1030.16004, MR 1798574, 10.1112/blms/33.1.41 |
Reference:
|
[9] Enochs E.E., Jenda O.M.G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000. Zbl 0952.13001, MR 1753146 |
Reference:
|
[10] Enochs E.E., Jenda O.M.G., Xu J.: The existence of envelopes.Rend. Sem. Mat. Univ. Padova 90 (1990), 45--51. Zbl 0803.16001, MR 1257131 |
Reference:
|
[11] Fieldhouse D.J.: Character modules.Comment. Math. Helv. 46 (1971), 274-276. Zbl 0258.16028, MR 0294408, 10.1007/BF02566844 |
Reference:
|
[12] Göbel R., Trlifaj J.: Approximations and Endomorphism Algebras of Modules.de Gruyter Expositions in Mathematics, 41, de Gruyter, Berlin, 2006. MR 2251271 |
Reference:
|
[13] Holm H., Jøgensen P.: Covers, preenvelopes, and purity.Illinois J. Math. 52 (2008), 691--703. MR 2524661 |
Reference:
|
[14] Jain S.: Flat and FP-injectivity.Proc. Amer. Math. Soc. 41 (1973), no. 2, 437--442. Zbl 0246.16013, MR 0323828, 10.1090/S0002-9939-1973-0323828-9 |
Reference:
|
[15] Mao L.X., Ding N.Q.: Envelopes and covers by modules of finite FP-injective and flat dimensions.Comm. Algebra 35 (2007), 835--849. Zbl 1122.16007, MR 2305235 |
Reference:
|
[16] Ramamurthi V.S.: On modules with projective character modules.Math. Japon. 23 (1978), 181--184. Zbl 0412.16015, MR 0517797 |
Reference:
|
[17] Rada J., Saorín M.: Rings characterized by (pre)envelopes and (pre)covers of their modules.Comm. Algebra 26 (1998), 899--912. Zbl 0908.16003, MR 1606190, 10.1080/00927879808826172 |
Reference:
|
[18] Stenström B.: Coherent rings and FP-injective modules.J. London Math. Soc. 2 (1970), 323--329. MR 0258888, 10.1112/jlms/s2-2.2.323 |
. |