Previous |  Up |  Next

Article

Title: Strict topologies and Banach-Steinhaus type theorems (English)
Author: Nowak, Marian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 563-568
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a completely regular Hausdorff space, $E$ a real Banach space, and let $C_b(X,E)$ be the space of all $E$-valued bounded continuous functions on $X$. We study linear operators from $C_b(X,E)$ endowed with the strict topologies $\beta_z$ $(z=\sigma,\tau,\infty,g)$ to a real Banach space $(Y,\|\cdot\|_Y)$. In particular, we derive Banach-Steinhaus type theorems for $(\beta_z,\|\cdot\|_Y)$ continuous linear operators from $C_b(X,E)$ to $Y$. Moreover, we study $\sigma$-additive and $\tau$-additive operators from $C_b(X,E)$ to $Y$. (English)
Keyword: vector-valued continuous functions
Keyword: strict topologies
Keyword: locally solid topologies
Keyword: Dini-topologies
Keyword: strong Mackey space
Keyword: $\sigma $-additive operators
Keyword: $\tau $-additive operators
MSC: 46E10
MSC: 47A70
MSC: 47B38
idZBL: Zbl 1211.47018
idMR: MR2583133
.
Date available: 2009-12-22T10:03:42Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137446
.
Reference: [AB] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, New York, 1985. Zbl 1098.47001, MR 0809372
Reference: [F] Fontenot R.A.: Strict topologies for vector-valued functions.Canad. J. Math. 26 (1974), 841--853. Zbl 0259.46037, MR 0348463, 10.4153/CJM-1974-079-1
Reference: [K] Khurana S.S.: Topologies on spaces of vector-valued continuous functions.Trans. Amer. Math. Soc. 241 (1978), 195--211. Zbl 0487.46014, MR 0492297, 10.1090/S0002-9947-1978-0492297-X
Reference: [KO$_1$] Khurana S.S., Othman S.I.: Convex compactnes property in some spaces of measures.Math. Ann. 279 (1987), 345--348. MR 0919510, 10.1007/BF01461727
Reference: [KO$_2$] Khurana S.S., Othman S.I.: Grothendieck measures.J. London Math. Soc. (2) 39 (1989), 481--486. Zbl 0681.46030, MR 1002460, 10.1112/jlms/s2-39.3.481
Reference: [KO$_3$] Khurana S.S., Othman S.I.: Completeness and sequential completeness in certain spaces of measures.Math. Slovaca 45 (1995), no. 2, 163--170. Zbl 0832.46016, MR 1357072
Reference: [KV] Khurana S.S., Vielma J.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions.J. Math. Anal. Appl. 195 (1995), 251--260. Zbl 0854.46032, MR 1352821, 10.1006/jmaa.1995.1353
Reference: [NR] Nowak M., Rzepka A.: Locally solid topologies on spaces of vector-valued continuous functions.Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473--483. Zbl 1068.46023, MR 1920522
Reference: [SZ] Schaefer H., Zhang X.-D.: On the Vitali-Hahn-Saks theorem.Oper. Theory Adv. Appl., 75, Birkhäuser, Basel, 1995, pp. 289--297. Zbl 0830.28007, MR 1322508
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_6.pdf 217.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo