Title:
|
Strict topologies and Banach-Steinhaus type theorems (English) |
Author:
|
Nowak, Marian |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
4 |
Year:
|
2009 |
Pages:
|
563-568 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a completely regular Hausdorff space, $E$ a real Banach space, and let $C_b(X,E)$ be the space of all $E$-valued bounded continuous functions on $X$. We study linear operators from $C_b(X,E)$ endowed with the strict topologies $\beta_z$ $(z=\sigma,\tau,\infty,g)$ to a real Banach space $(Y,\|\cdot\|_Y)$. In particular, we derive Banach-Steinhaus type theorems for $(\beta_z,\|\cdot\|_Y)$ continuous linear operators from $C_b(X,E)$ to $Y$. Moreover, we study $\sigma$-additive and $\tau$-additive operators from $C_b(X,E)$ to $Y$. (English) |
Keyword:
|
vector-valued continuous functions |
Keyword:
|
strict topologies |
Keyword:
|
locally solid topologies |
Keyword:
|
Dini-topologies |
Keyword:
|
strong Mackey space |
Keyword:
|
$\sigma $-additive operators |
Keyword:
|
$\tau $-additive operators |
MSC:
|
46E10 |
MSC:
|
47A70 |
MSC:
|
47B38 |
idZBL:
|
Zbl 1211.47018 |
idMR:
|
MR2583133 |
. |
Date available:
|
2009-12-22T10:03:42Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/137446 |
. |
Reference:
|
[AB] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, New York, 1985. Zbl 1098.47001, MR 0809372 |
Reference:
|
[F] Fontenot R.A.: Strict topologies for vector-valued functions.Canad. J. Math. 26 (1974), 841--853. Zbl 0259.46037, MR 0348463, 10.4153/CJM-1974-079-1 |
Reference:
|
[K] Khurana S.S.: Topologies on spaces of vector-valued continuous functions.Trans. Amer. Math. Soc. 241 (1978), 195--211. Zbl 0487.46014, MR 0492297, 10.1090/S0002-9947-1978-0492297-X |
Reference:
|
[KO$_1$] Khurana S.S., Othman S.I.: Convex compactnes property in some spaces of measures.Math. Ann. 279 (1987), 345--348. MR 0919510, 10.1007/BF01461727 |
Reference:
|
[KO$_2$] Khurana S.S., Othman S.I.: Grothendieck measures.J. London Math. Soc. (2) 39 (1989), 481--486. Zbl 0681.46030, MR 1002460, 10.1112/jlms/s2-39.3.481 |
Reference:
|
[KO$_3$] Khurana S.S., Othman S.I.: Completeness and sequential completeness in certain spaces of measures.Math. Slovaca 45 (1995), no. 2, 163--170. Zbl 0832.46016, MR 1357072 |
Reference:
|
[KV] Khurana S.S., Vielma J.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions.J. Math. Anal. Appl. 195 (1995), 251--260. Zbl 0854.46032, MR 1352821, 10.1006/jmaa.1995.1353 |
Reference:
|
[NR] Nowak M., Rzepka A.: Locally solid topologies on spaces of vector-valued continuous functions.Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473--483. Zbl 1068.46023, MR 1920522 |
Reference:
|
[SZ] Schaefer H., Zhang X.-D.: On the Vitali-Hahn-Saks theorem.Oper. Theory Adv. Appl., 75, Birkhäuser, Basel, 1995, pp. 289--297. Zbl 0830.28007, MR 1322508 |
. |