Previous |  Up |  Next

Article

Title: Trigonometric approximation by Nörlund type means in $L^p$-norm (English)
Author: Szal, Bogdan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 575-589
Summary lang: English
.
Category: math
.
Summary: We show that the same degree of approximation as in the theorems proved by L. Leindler [Trigonometric approximation in $L^p$-norm, J. Math. Anal. Appl. 302 (2005), 129--136] and P. Chandra [Trigonometric approximation of functions in $L^p$-norm, J. Math. Anal. Appl. 275 (2002), 13--26] is valid for a more general class of lower triangular matrices. We also prove that these theorems are true under weakened assumptions. (English)
Keyword: class $\operatorname{Lip} (\alpha,p)$
Keyword: $L^p$-norm
Keyword: trigonometric approximation
MSC: 41A25
MSC: 42A10
idZBL: Zbl 1212.42002
idMR: MR2583135
.
Date available: 2009-12-22T10:04:10Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137448
.
Reference: [1] Chandra P.: Approximation by Nörlund operators.Mat. Vestnik 38 (1986), 263--269. Zbl 0655.42002, MR 0870945
Reference: [2] Chandra P.: Functions of classes $L^p$ and $Lip (\alpha ,p)$ and their Riesz means.Riv. Mat. Univ. Parma (4) 12 (1986), 275--282. Zbl 0853.42002, MR 0913050
Reference: [3] Chandra P.: A note on degree of approximation by Nörlund and Riesz operators.Mat. Vestnik 42 (1990), 9--10. Zbl 0725.42004, MR 1096908
Reference: [4] Chandra P.: Trigonometric approximation of functions in $L^p$-norm.J. Math. Anal. Appl. 275 (2002), 13--26. MR 1941769, 10.1016/S0022-247X(02)00211-1
Reference: [5] Leindler L.: Trigonometric approximation in $L^p$-norm.J. Math. Anal. Appl. 302 (2005), 129--136. MR 2107350, 10.1016/j.jmaa.2004.07.049
Reference: [6] Mohapatra R.N., Russell D.C.: Some direct and inverse theorem in approximation of functions.J. Austral. Math. Soc. (Ser. A) 34 (1983), 143--154. MR 0687320, 10.1017/S144678870002317X
Reference: [7] Sahney B.N., Rao V.V.: Error bounds in the approximation of functions.Bull. Austral. Math. Soc. 6 (1972), 11--18. Zbl 0229.42009, MR 0293316, 10.1017/S0004972700044208
Reference: [8] Quade E.S.: Trigonometric approximation in the mean.Duke Math. J. 3 (1937), 529--542. Zbl 0017.20501, MR 1546008, 10.1215/S0012-7094-37-00342-9
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_8.pdf 237.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo