Previous |  Up |  Next

Article

Title: Perturbed Hammerstein integral inclusions with solutions that change sign (English)
Author: Infante, Gennaro
Author: Pietramala, Paolamaria
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 591-605
Summary lang: English
.
Category: math
.
Summary: We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of $[0,1]$. We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature. (English)
Keyword: fixed point index
Keyword: cone
Keyword: nontrivial solution
MSC: 34A60
MSC: 34B10
MSC: 45G10
MSC: 47H04
MSC: 47H10
MSC: 47H30
idZBL: Zbl 1212.45009
idMR: MR2583136
.
Date available: 2009-12-22T10:04:24Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137449
.
Reference: [1] Agarwal R.P., Avery R., Henderson J., O'Regan D.: The five functionals fixed point theorem generalized to multivalued maps.J. Nonlinear Convex Anal. 4 (2003), 455--462. Zbl 1065.47050, MR 2026456
Reference: [2] Agarwal R.P., O'Regan D.: A note on the existence of multiple fixed points for multivalued maps with applications.J. Differential Equations 160 (2000), 389--403. Zbl 1008.47055, MR 1736998, 10.1006/jdeq.1999.3690
Reference: [3] Agarwal R.P., O'Regan D.: A generalization of the Petryshyn-Leggett-Williams fixed point theorem with applications to integral inclusions.Appl. Math. Comput. 123 (2001), 263--274. Zbl 1033.47037, MR 1847915, 10.1016/S0096-3003(00)00077-1
Reference: [4] Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces.SIAM Rev. 18 (1976), 620--709. Zbl 0345.47044, MR 0415432, 10.1137/1018114
Reference: [5] Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems.Kluwer Academic Publishers, Dordrecht, 2003. MR 1998968
Reference: [6] Aubin J.P., Cellina A.: Differential Inclusions.Springer, Berlin, 1984. Zbl 0538.34007, MR 0755330
Reference: [7] Benchohra M., Ntouyas S.K.: A note on a three point boundary value problem for second order differental inclusions.Math. Notes (Miskolc) 2 (2001), 39--47. MR 1854436
Reference: [8] Benchohra M., Ouahab A.: Upper and lower solutions method for differential inclusions with integral boundary conditions.J. Appl. Math. Stoch. Anal. 2006, Art. ID 10490, 10 pp. Zbl 1122.34006, MR 2212591
Reference: [9] Dhage B.C., Graef J.R.: On boundary-value problems for second order perturbed differential inclusions.Appl. Anal. 84 (2005), 953--970. Zbl 1088.34009, MR 2172410, 10.1080/00036810500136197
Reference: [10] Dhage B.C., Ntouyas S.K., Cho Y.J.: On the second order discontinuous differential inclusions.J. Appl. Funct. Anal. 1 (2006), 469--476. Zbl 1108.34302, MR 2220805
Reference: [11] Deimling K.: Nonlinear Functional Analysis.Springer, Berlin, 1985. Zbl 0559.47040, MR 0787404
Reference: [12] Deimling K.: Multivalued Differential Equations.Walter de Gruyter, Berlin, 1992. Zbl 0820.34009, MR 1189795
Reference: [13] Erbe L., Ma R., Tisdell C.C.: On two point boundary value problems for second order differential inclusions.Dynam. Systems Appl. 15 (2006), 79--88. Zbl 1112.34008, MR 2194094
Reference: [14] Fitzpatrick P.M., Petryshyn W.V.: Fixed point theorems and the fixed point index for multivalued mappings in cones.J. London Math. Soc. 12 (1975/76), 75--85. Zbl 0329.47022, MR 0405180
Reference: [15] Franco D., Infante G., O'Regan D.: Positive and nontrivial solutions for the Urysohn integral equation.Acta Math. Sin. (Engl. Ser.) 22 (2006), 1745--1750. Zbl 1130.45004, MR 2262433, 10.1007/s10114-005-0782-3
Reference: [16] Franco D., Infante G., O'Regan D.: Nontrivial solutions in abstract cones for Hammerstein integral systems.Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14 (2007), 837--850. Zbl 1139.45004, MR 2369916
Reference: [17] Guo D., Lakshmikantham V.: Nonlinear Problems in Abstract Cones.Academic Press, Boston, 1988. Zbl 0661.47045, MR 0959889
Reference: [18] Hong S., Wang L.: Existence of solutions for integral inclusions.J. Math. Anal. Appl. 317 (2006), 429--441. Zbl 1125.45006, MR 2208929, 10.1016/j.jmaa.2006.01.057
Reference: [19] Hong S.: Multiple positive solutions for a class of integral inclusions.J. Comput. Appl. Math. 214 (2008), 19--29. Zbl 1151.45004, MR 2391669, 10.1016/j.cam.2007.01.024
Reference: [20] Infante G.: Eigenvalues of some non-local boundary-value problems.Proc. Edinb. Math. Soc. 46 (2003), 75--86. Zbl 1049.34015, MR 1961173, 10.1017/S0013091501001079
Reference: [21] Infante G.: Nonzero solutions of second order problems subject to nonlinear BCs.Dynamic systems and applications. Vol. 5, Dynamic, Atlanta, GA, (2008), 222--226. MR 2468144
Reference: [22] Infante G., Webb J.R.L.: Nonzero solutions of Hammerstein integral equations with discontinuous kernels.J. Math. Anal. Appl. 272 (2002), 30--42. Zbl 1008.45004, MR 1930701, 10.1016/S0022-247X(02)00125-7
Reference: [23] Infante G., Webb J.R.L.: Three point boundary value problems with solutions that change sign.J. Integral Equations Appl. 15 (2003), 37--57. Zbl 1055.34023, MR 2004793, 10.1216/jiea/1181074944
Reference: [24] Infante G., Webb J.R.L.: Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations.Proc. Edinb. Math. Soc. 49 (2006), 637--656. MR 2266153, 10.1017/S0013091505000532
Reference: [25] Infante G., Webb J.R.L.: Loss of positivity in a nonlinear scalar heat equation.NoDEA Nonlinear Differential Equations Appl. 13 (2006), 249--261. Zbl 1112.34017, MR 2243714, 10.1007/s00030-005-0039-y
Reference: [26] Karakostas G.L., Tsamatos P.Ch.: Existence of multiple positive solutions for a nonlocal boundary value problem.Topol. Methods Nonlinear Anal. 19 (2002), 109--121. Zbl 1071.34023, MR 1921888
Reference: [27] Krasnosel'skiĭ M.A., Zabreĭko P.P.: Geometrical Methods of Nonlinear Analysis.Springer, Berlin, 1984. MR 0736839
Reference: [28] Lan K.Q.: Multiple positive solutions of Hammerstein integral equations with singularities.Diff. Eqns and Dynam. Syst. 8 (2000), 175--195. Zbl 0977.45001, MR 1862603
Reference: [29] Lan K.Q.: Multiple positive solutions of semilinear differential equations with singularities.J. London Math. Soc. 63 (2001), 690--704. Zbl 1032.34019, MR 1825983, 10.1112/S002461070100206X
Reference: [30] Lan K.Q.: Positive characteristic values and optimal constants for three-point boundary value problems.Differential & Difference Equations and Applications, 623--633, Hindawi Publ. Corp., New York, 2006. Zbl 1129.34008, MR 2309394
Reference: [31] Lan K.Q.: Properties of kernels and multiple positive solutions for three-point boundary value problems.Appl. Math. Lett. 20 (2007), 352--357. Zbl 1125.34307, MR 2292572, 10.1016/j.aml.2006.04.018
Reference: [32] Lan K.Q., Yang G.C.: Optimal constants for two point boundary value problems.Discrete Contin. Dyn. Syst., suppl. (2007), 624--633. Zbl 1163.34328, MR 2409898
Reference: [33] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781--786. Zbl 0151.10703, MR 0196178
Reference: [34] Ma T.: Topological degrees of set-valued compact fields in locally convex spaces.Dissertationes Math. (Rozprawy Mat.) 92 (1972), 1--42. Zbl 0211.25903, MR 0309103
Reference: [35] Ma R., Castaneda N.: Existence of solutions of nonlinear $m$-point boundary value problems.J. Math. Anal. Appl. 256 (2001), 556--567. Zbl 0988.34009, MR 1821757, 10.1006/jmaa.2000.7320
Reference: [36] Marino G.: Nonlinear boundary value problems for multivalued differential equations in Banach spaces.Nonlinear Anal. 14 (1990), 545--558. Zbl 0692.34018, MR 1044285, 10.1016/0362-546X(90)90061-K
Reference: [37] O'Regan D.: Integral inclusions of upper semi-continuous or lower semi-continuous type.Proc. Amer. Math. Soc. 124 (1996), 2391--2399. Zbl 0860.45007, MR 1342037, 10.1090/S0002-9939-96-03456-9
Reference: [38] O'Regan D., Zima M.: Leggett-Williams norm-type fixed point theorems for multivalued mappings.Appl. Math. Comput. 187 (2007), 1238-1249. Zbl 1126.47046, MR 2321327, 10.1016/j.amc.2006.09.035
Reference: [39] O'Regan D., Zima M.: Leggett-Williams theorems for coincidences of multivalued operators.Nonlinear Anal. 68 (2008), 2879--2888. Zbl 1152.47041, MR 2404806, 10.1016/j.na.2007.02.034
Reference: [40] Webb J.R.L.: Positive solutions of some three point boundary value problems via fixed point index theory.Nonlinear Anal. 47 (2001), 4319--4332. Zbl 1042.34527, MR 1975828, 10.1016/S0362-546X(01)00547-8
Reference: [41] Webb J.R.L.: Multiple positive solutions of some nonlinear heat flow problems.Discrete Contin. Dyn. Syst., suppl. (2005), 895--903. Zbl 1161.34007, MR 2192752
Reference: [42] Webb J.R.L.: Optimal constants in a nonlocal boundary value problem.Nonlinear Anal. 63 (2005), 672--685. Zbl 1153.34320, MR 2188140, 10.1016/j.na.2005.02.055
Reference: [43] Webb J.R.L.: Fixed point index and its application to positive solutions of nonlocal boundary value problems.Seminar of Mathematical Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 181--205. Zbl 1124.47040, MR 2276962
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_9.pdf 260.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo