Previous |  Up |  Next

Article

Title: Almost complex projective structures and their morphisms (English)
Author: Hrdina, Jaroslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 4
Year: 2009
Pages: 255-264
Summary lang: English
.
Category: math
.
Summary: We discuss almost complex projective geometry and the relations to a distinguished class of curves. We present the geometry from the viewpoint of the theory of parabolic geometries and we shall specify the classical generalizations of the concept of the planarity of curves to this case. In particular, we show that the natural class of J-planar curves coincides with the class of all geodesics of the so called Weyl connections and preserving of this class turns out to be the necessary and sufficient condition on diffeomorphisms to become homomorphisms or anti-homomorphisms of almost complex projective geometries. (English)
Keyword: linear connection
Keyword: geodetics
Keyword: $F$-planar
Keyword: $A$-planar
Keyword: parabolic geometry
Keyword: Cartan geometry
Keyword: almost complex structure
Keyword: projective structure
MSC: 53B10
MSC: 53C15
idZBL: Zbl 1212.53022
idMR: MR2591680
.
Date available: 2009-12-22T07:52:48Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/137458
.
Reference: [1] Čap, A., Slovák, J.: Weyl structures for parabolic geometries.Math. Scand. 93 (2003), 53–90. Zbl 1076.53029, MR 1997873
Reference: [2] Čap, A., Slovák, J.: Parabolic geometries I, Background and general theory.Math. Surveys Monogr., vol. 154, AMS Publishing House, 2009, p. 628. Zbl 1183.53002, MR 2532439
Reference: [3] Hrdina, J., Slovák, J.: Generalized planar curves and quaternionic geometry.Global analysis and geometry 29 (2006), 349–360. Zbl 1097.53008, MR 2251428
Reference: [4] Hrdina, J., Slovák, J.: Morphisms of almost product projective geometries.Differential Geometry and Applications, World Scientific, 2008, pp. 243–251. Zbl 1168.53013, MR 2462798
Reference: [5] Kobayashi, S.: Transformation groups in differential geometry.Springer-Verlag, New York-Heidelberg, 1972. Zbl 0246.53031, MR 0355886
Reference: [6] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of spaces of affine connection.Soviet Math. 27 (1) (1983), 63–70.
Reference: [7] Šilhan, J.: Algorithmic computations of Lie algebras cohomologies.Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003), 191–197, Proceedings of the 22nd Winter School “Geometry and Physics” (Srní, 2002), www.math.muni.cz/ silhan/lie. Zbl 1032.17037, MR 1982446
Reference: [8] Yano, K.: Differential geometry on complex and almost complex spaces.The Macmillan Company NY, 1965. Zbl 0127.12405, MR 0187181
.

Files

Files Size Format View
ArchMathRetro_045-2009-4_3.pdf 505.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo