Previous |  Up |  Next

Article

Title: Examples of homotopy Lie algebras (English)
Author: Bering, Klaus
Author: Lada, Tom
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 4
Year: 2009
Pages: 265-277
Summary lang: English
.
Category: math
.
Summary: We look at two examples of homotopy Lie algebras (also known as $L_{\infty }$ algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators $\Delta $ to verify the homotopy Lie data is shown to produce the same results. (English)
Keyword: homotopy Lie algebras
Keyword: generalized Batalin-Vilkovisky algebras
Keyword: Koszul brackets
Keyword: higher antibrackets
MSC: 17B55
MSC: 18G55
idZBL: Zbl 1212.18015
idMR: MR2591681
.
Date available: 2009-12-22T07:52:58Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/137459
.
Reference: [1] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization.Phys. Lett. 102B (1981), 27–31. MR 0616572
Reference: [2] Bering, K.: Non-commutative Batalin-Vilkovisky algebras, homotopy Lie algebras and the Courant bracket.Comm. Math. Phys. 274 (2007), 297–34. Zbl 1146.17015, MR 2322905, 10.1007/s00220-007-0278-3
Reference: [3] Bering, K., Damgaard, P. H., Alfaro, J.: Algebra of higher antibrackets.Nuclear Phys. B 478 (1996), 459–504. Zbl 0925.81398, MR 1420164, 10.1016/0550-3213(96)00401-4
Reference: [4] Daily, M.: Examples of $L_m$ and $L_\infty $ structures on $V_0\oplus V_1$.unpublished notes.
Reference: [5] Daily, M., Lada, T.: A finite dimensional $L_\infty $ algebra example in gauge theory.Homotopy, Homology and Applications 7 (2005), 87–93. Zbl 1075.18011, MR 2156308
Reference: [6] Lada, T., Markl, M.: Strongly homotopy Lie algebras.Comm. Algebra 23 (1995), 2147–2161. Zbl 0999.17019, MR 1327129, 10.1080/00927879508825335
Reference: [7] Lada, T., Stasheff, J. D.: Introduction to sh Lie algebras for physicists.Internat. J. Theoret. Phys. 32 (1993), 1087–1103. Zbl 0824.17024, MR 1235010, 10.1007/BF00671791
.

Files

Files Size Format View
ArchMathRetro_045-2009-4_4.pdf 488.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo