Title:
|
Remarks on several types of convergence of bounded sequences (English) |
Author:
|
Baláž, V. |
Author:
|
Strauch, O. |
Author:
|
Šalát, T. |
Language:
|
English |
Journal:
|
Acta Mathematica Universitatis Ostraviensis |
ISSN:
|
1214-8148 |
Volume:
|
14 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
3-12 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, ${\cal I}_u$-convergence, $\varphi $-convergence, almost convergence, strong $p$-Cesàro convergence and uniformly strong $p$-Cesàro convergence. (English) |
Keyword:
|
sequence |
Keyword:
|
statistical convergence |
Keyword:
|
${\cal I}$-convergence |
Keyword:
|
almost convergence |
Keyword:
|
Cesàro convergence |
Keyword:
|
uniform convergence |
Keyword:
|
Euler function |
Keyword:
|
prime number |
Keyword:
|
$\varphi $-convergence |
MSC:
|
11K31 |
MSC:
|
40A05 |
MSC:
|
40A25 |
MSC:
|
40D25 |
idZBL:
|
Zbl 1124.40001 |
idMR:
|
MR2298906 |
. |
Date available:
|
2009-12-29T09:18:17Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/137474 |
. |
Reference:
|
[1] BALÁŽ, V., ŠALÁT, T.: Uniform density $u$ and corresponding $I_u$-convergence,.Math. Communication 11 (2006), 1–7. |
Reference:
|
[2] BROWN, T.C., FREEDMAN, A.R.: Arithmetic progressions in lacunary sets.Mountain J. Math. 17 (1987), 587–596. MR 0908265 |
Reference:
|
[3] BROWN, T.C., FREEDMAN, A.R.: The uniform density of sets of integers and Fermat’s Last Theorem.C. R. Math. Ref. Acad. Sci. Canada XII (1990), 1–6.. MR 1043085 |
Reference:
|
[4] BOURBAKI, N.: Éléments De Mathématique Topologie Générale Livre III.Russian translation: Obščaja topologija Osnovnye struktury, Nauka, Moskva, 1968. |
Reference:
|
[5] CONNOR, J.S.: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458 |
Reference:
|
[6] CONNOR, J.S.: Two valued measures and summability,.Analysis 10 (1990), 1–6. Zbl 0726.40009, MR 1085803 |
Reference:
|
[7] ERDÖS, P.: Solution of advanced problems: $\varphi $-convergence.Amer. Math. Monthly 85 (1978), 122-123. |
Reference:
|
[8] FAST, H.: Sur la convergence statistique.Coll. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548 |
Reference:
|
[9] FRIDY, J.A.: On statistical convergence.Analysis 5 (1985), 301-313. Zbl 0588.40001, MR 0816582 |
Reference:
|
[10] GOFFMAN, C.: Functions of finite Baire type.Amer. Math. Monthly 67 (1960), 164-165. Zbl 0093.06104, MR 0118788 |
Reference:
|
[11] KOLODZIEJ, W.: Selected Parts of Mathematical Analysis.PWN, Warszawa, 1970. (Polish) MR 0514704 |
Reference:
|
[12] KOSTYRKO, P., ŠALÁT, T., WILCZINSKI, W.: ${\cal I}$-convergence.Real. Anal. Exchange 26 (2000–2001), 669-686. MR 1844385 |
Reference:
|
[13] KOSTYRKO, P., MÁČAJ, M., ŠALÁT, T., SLEZIAK, M.: ${\cal I}$-convergence and extremal ${\cal I}$-limit points.Math. Slovaca 55 (2005), no. 4,, 443-464. MR 2181783 |
Reference:
|
[14] KOVÁČ, E.: On $\varphi $-convergence and $\varphi $-density.Math. Slovaca 55 (2005), no. 3, 139-150. Zbl 1113.40002, MR 2181010 |
Reference:
|
[15] KUIPERS, L., NIEDERREITER, H.: Uniform Distribution of Sequences.John Wiley & Sons, New York, 1974. MR 0419394 |
Reference:
|
[16] LORENTZ, G.G.: A contribution to theory of divergent sequences.Acta Math. 80 (1948), 167-190. MR 0027868 |
Reference:
|
[17] MADDOX, I.J.: A new type of convergence.Math. Proc. Cambridge Phil. Soc. 83 (1978), 61-64. Zbl 0392.40001, MR 0493034 |
Reference:
|
[18] MADDOX, I.J.: Steinhaus type theorems for sumability matrices.Proc. Amer. Math Soc. 45 (1974), 209-213. MR 0364938 |
Reference:
|
[19] MILLER, H.I., ORHAN, C.: On almost convergent and statistically convergent subsequences.Acta Math. Hung. 43 (2001), 135-151. MR 1924673 |
Reference:
|
[20] PETERSEN, G.: Regular Matrix Transformations.Mc-Graw Hill Publ. Comp., London-New York-Toronto-Sydney, 1966. Zbl 0159.35401, MR 0225045 |
Reference:
|
[21] SCHOENBERG, I.J.: The integrability of certain functions and related sumability methods.Amer. Math. Monthly 66 (1959), 361–375. MR 0104946 |
Reference:
|
[22] STRAUCH, O., PORUBSKÝ, Š.: Distribution of Sequences: A Sampler.Schriftenreihe der Slowakischen Akademie der Wissenschaften, Band 1, Peter Lang, Frankfurt am Main, 2005. MR 2290224 |
Reference:
|
[23] ŠALÁT, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239 |
Reference:
|
[24] THOMSON, B.S. : Real Functions, .Springer-Verlag , Berlin-Göttingen-Heidelberg-New York-Tokyo, 1985. Zbl 0581.26001, MR 0818744 |
Reference:
|
[25] ZAJÍČEK, L.: Porosity and $\sigma $-porosity.Real. Anal. Exchange 13 (1987–88), 314-350. MR 0943561 |
Reference:
|
[26] WIERDL, M.: Almost everywhere convergence and recurrence along subsequences in ergodic theory.Ph.D. Thesis, The Ohio State University. |
Reference:
|
[27] WINKLER, R.: Hartman sets, functions and sequences - a survey.Advanced Studies in Pure Mathematics 43 (2006), 1–27. MR 2405618 |
. |