Previous |  Up |  Next

Article

Title: A survey of results on density modulo $1$ of double sequences containing algebraic numbers (English)
Author: Urban, Roman
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 16
Issue: 1
Year: 2008
Pages: 31-43
.
Category: math
.
Summary: In this survey article we start from the famous Furstenberg theorem on non-lacunary semigroups of integers, and next we present its generalizations and some related results. (English)
Keyword: Algebraic numbers
Keyword: density modulo $1$
Keyword: uniformly distributed sequences
Keyword: topological dynamics
Keyword: semigroups of endomorphisms
Keyword: ID-semigroup
Keyword: invariant sets
Keyword: $a$-adic solenoids
MSC: 11-02
MSC: 11J71
MSC: 37A45
MSC: 54H15
MSC: 54H20
idZBL: Zbl 1231.11078
idMR: MR2498635
.
Date available: 2009-12-29T09:23:56Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137499
.
Reference: [1] Akhunzhanov R.K. : On the distribution modulo 1 of exponential sequences.. Math. Notes 76(2):153–160, 2004. Zbl 1196.11107, MR 2098988, 10.1023/B:MATN.0000036753.96493.67
Reference: [2] Berend D. : Multi-invariant sets on tori.. Trans. Amer. Math. Soc., 280(2):509–532, 1983. Zbl 0532.10028, MR 0716835, 10.1090/S0002-9947-1983-0716835-6
Reference: [3] Berend D. : Multi-invariant sets on compact abelian groups.. Trans. Amer. Math. Soc. 286(2):505–535, 1984. Zbl 0523.22004, MR 0760973, 10.1090/S0002-9947-1984-0760973-X
Reference: [4] Berend D. : Actions of sets of integers on irrationals.. Acta Arith. 48:275–306, 1987. Zbl 0575.10030, MR 0921090
Reference: [5] Berend D. : Dense $({\rm mod}\,1)$ dilated semigroups of algebraic numbers.. J. Number Theory, 26(3):246–256, 1987. MR 0901238, 10.1016/0022-314X(87)90082-5
Reference: [6] Boshernitzan M. D. : Elementary proof of Furstenberg’s Diophantine result.. Proc. Amer. Math. Soc. 122(1):67–70, 1994. Zbl 0815.11036, MR 1195714
Reference: [7] Bourgain J., Lindenstrauss E., Michel P., Venkatesh A. : Some effective results for $\times a$ $\times b.$.Preprint. Available online at http://cims.nyu.edu/~venkatesh/research/blmv.pdf MR 2563089
Reference: [8] Dubickas A. : Two exercises concerning the degree of the product of algebraic numbers.. Publ. Inst. Math. (Beograd) (N.S.) 77(91):67–70, 2005. Zbl 1220.11131, MR 2213512, 10.2298/PIM0591067D
Reference: [9] Furstenberg H. : Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation.. Math. Systems Theory, 1:1–49, 1967. Zbl 0146.28502, MR 0213508, 10.1007/BF01692494
Reference: [10] Guivarc’h Y. : Renewal theorems, products of random matrices, and toral endomorphisms.. Potential theory in Matsue, 53–66, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006. MR 2277822
Reference: [11] Guivarc’h Y., Starkov A. N. : Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms.. Ergodic Theory Dynam. Systems, 24(3):767–802, 2004. MR 2060998
Reference: [12] Guivarc’h Y., Urban R. : Semigroup actions on tori and stationary measures on projective spaces., Studia Math. 171(1):33–66, 2005. Corrigendum to the paper: Studia Math. 183(2):195–196, 2007. MR 2182271
Reference: [13] Hewitt E., Ross K. A. : Abstract harmonic analysis., volume 1. Springer, Berlin, 1994. Zbl 0837.43002
Reference: [14] Kra B. : A generalization of Furstenberg’s Diophantine theorem.. Proc. Amer. Math. Soc. 127(7):1951–1956, 1999. MR 1487320
Reference: [15] Lindenstrauss E. : Rigidity of multiparameter actions.. Israel J. Math. 149:199–227, 2005. Zbl 1155.37301, MR 2191215, 10.1007/BF02772541
Reference: [16] Meiri D. : Entropy and uniform distribution of orbits in $\mathbb T^d$.. Israel J. Math. 105:155–183, 1998. MR 1639747
Reference: [17] Meiri D., Peres Y. : Bi-invariant sets and measures have integer Hausdorff dimension.. Ergodic Theory Dynam. Systems 19(2):523–534, 1999. MR 1685405
Reference: [18] Muchnik R. : Orbits of Zariski dense semigroups of $\mathrm {SL}(n,\mathbb Z)$., preprint
Reference: [19] Muchnik R. : Semigroup actions on $\mathbb T^n$.. Geometriae Dedicata, 110:1–47, 2005. MR 2136018
Reference: [20] Urban R. : On density modulo $1$ of some expressions containing algebraic integers.. Acta Arith., 127(3):217–229, 2007. Zbl 1202.11041, MR 2310344, 10.4064/aa127-3-2
Reference: [21] Urban R. : Sequences of algebraic integers and density modulo $1$.. J. Théor. Nombres Bordeaux 19(3):755–762, 2007. MR 2388796, 10.5802/jtnb.610
Reference: [22] Urban R. : Algebraic numbers and density modulo $1$.. J. Number Theory, 128(3):645–661, 2008. MR 2389861, 10.1016/j.jnt.2007.05.012
Reference: [23] Urban R.: Sequences of algebraic numbers and density modulo $1$.. Publ. Math. Debrecen, 72(1–2):141–154, 2008. Zbl 1164.11027, MR 2376865
Reference: [24] Urban R.: On density modulo $1$ of some expressions containing algebraic numbers., submitted.
Reference: [25] Veech W. A. : Topological dynamics.. Bull. Amer. Math. Soc. 83(5):775–830, 1977. Zbl 0384.28018, MR 0467705, 10.1090/S0002-9904-1977-14319-X
.

Files

Files Size Format View
ActaOstrav_16-2008-1_4.pdf 537.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo