Previous |  Up |  Next

Article

Title: A visual approach to test lattices (English)
Author: Czédli, Gábor
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 48
Issue: 1
Year: 2009
Pages: 33-52
Summary lang: English
.
Category: math
.
Summary: Let $p$ be a $k$-ary lattice term. A $k$-pointed lattice $L=(L;\vee ,\wedge $, $d_1,\ldots ,d_k)$ will be called a $p$-lattice (or a test lattice if $p$ is not specified), if $(L;\vee ,\wedge )$ is generated by $\lbrace d_1,\ldots ,d_k\rbrace $ and, in addition, for any $k$-ary lattice term $q$ satisfying $p(d_1,\ldots ,d_k)$ $\le $ $q(d_1$, $\ldots , d_k)$ in $L$, the lattice identity $p\le q$ holds in all lattices. In an elementary visual way, we construct a finite $p$-lattice $L(p)$ for each $p$. If $p$ is a canonical lattice term, then $L(p)$ coincides with the optimal $p$-lattice of Freese, Ježek and Nation [Freese, R., Ježek, J., Nation, J. B.: Free lattices. American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs 42, 1995, viii+293 pp.]. Some results on test lattices and short proofs for known facts on free lattices indicate that our approach is useful. (English)
Keyword: Free lattice
Keyword: test lattice
Keyword: lattice identity
Keyword: Whitman’s condition
MSC: 06B25
idZBL: Zbl 1203.06011
idMR: MR2641946
.
Date available: 2010-02-11T13:54:45Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/137512
.
Reference: [1] Czédli, G.: On properties of rings that can be characterized by infinite lattice identitites.Studia Sci. Math. Hungar. 16 (1981), 45–60. MR 0703640
Reference: [2] Czédli, G.: Mal’cev conditions for Horn sentences with congruence permutability.Acta Math. Hungar. 44 (1984), 115–124. MR 0759039
Reference: [3] Czédli, G.: On the word problem of lattices with the help of graphs.Periodica Math. Hungar. 23 (1991), 49–58. MR 1141351
Reference: [4] Czédli, G., Day, A.: Horn sentences with (W) and weak Mal’cev conditions.Algebra Universalis 19 (1984), 217–230. Zbl 0549.08003, MR 0758319
Reference: [5] Day, A.: Doubling constructions in lattice theory.Canad. J. Math. 44 (1992), 252–269. Zbl 0768.06006, MR 1162342
Reference: [6] Freese, R., Ježek, J., Nation, J. B.: Free lattices.American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs 42, 1995, viii+293 pp. MR 1319815
Reference: [7] Freese, R., Nation, J. B.: Congruence lattices of semilattices.Pacific J. Math. 49 (1973), 51–58. Zbl 0287.06002, MR 0332590
Reference: [8] Grätzer, G.: General Lattice Theory.Birkhäuser Verlag, 1998 sec. ed. MR 1670580
Reference: [9] Haiman, M.: Proof theory for linear lattices.Adv. in Math. 58 (1985), 209–242. Zbl 0584.06003, MR 0815357
Reference: [10] Jónsson, B.: On the representation of lattices.Math. Scandinavica 1 (1953), 193–206. MR 0058567
Reference: [11] Jónsson, B.: Algebras whose congruence lattices are distributive.Math. Scandinavica 21 (1967), 110–121. MR 0237402
Reference: [12] Lipparini, P.: From congruence identities to tolerance identities.Acta Sci. Math. (Szeged) 73 (2007), 31–51. Zbl 1136.08001, MR 2339851
Reference: [13] Whitman, Ph. M.: Free lattices.Ann. of Math. 42 (1941), 325–330. Zbl 0024.24501, MR 0003614
.

Files

Files Size Format View
ActaOlom_48-2009-1_4.pdf 516.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo