Previous |  Up |  Next

Article

Title: Zovšeobecnená Liénardova diferenciálna rovnica (Slovak)
Title: Generalized Liénard differential equation (English)
Author: Hricišáková, Daniela
Language: Slovak
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 39
Issue: 1
Year: 1994
Pages: 26-34
.
Category: math
.
MSC: 01-01
MSC: 34-03
MSC: 34C05
MSC: 34C11
MSC: 34C15
MSC: 34C25
MSC: 37-99
idZBL: Zbl 0808.34044
idMR: MR1280449
.
Date available: 2010-12-11T11:39:07Z
Last updated: 2012-08-25
Stable URL: http://hdl.handle.net/10338.dmlcz/138632
.
Reference: [1] Bendixon, I.: Sur les courbes définies par des équations differentielles.Acta Math. 24 (1901), 1–88.
Reference: [2] Benson, D. C.: Asymptotic directions for solutions of Liénard systems.Nonlinear Anal. Theory Method Appl. 6 (1982), 293–301. Zbl 0516.34033, MR 0654806
Reference: [3] Birkhoff, G. D.: Dynamical Systems.Amer. Math. Soc. Coll. Publ., New York 1927.
Reference: [4] Cartan, E. H.: Note sur la génération des oscillations entretenues.Ann. Postes Télégraph 14 (1925), 1196–1207.
Reference: [5] Cotton, E.: Sur les solutions asymptotiques des équations différentielles.Ann. Sci. École Norm. Sup. 28 (1911), 473–521. MR 1509144
Reference: [6] De Figueiredo, R. J. P., Chang, C.-Y.: On the boundedness of solutions of classes of multidimensional nonlinear autonomous systems.SIAM J. Appl. Math. 17 (1969), 672–680. Zbl 0212.43302, MR 0255917
Reference: [7] Ding, W.: On the existence of periodic solutions for Liénard systems.Acta Math. Sinica 25 (1982), 626–632. Zbl 0514.34035, MR 0694434
Reference: [8] Fučík, Sv., Mawhin, J.: Periodic solutions of some nonlinear equation of higher order.Čas. pěst. mat. 100 (1975), 276–283. MR 0385240
Reference: [9] Graef, J. R.: On the generalized Liénard equation with negative damping.J. Differential Equations 12 (1972), 34–62. Zbl 0254.34038, MR 0328200
Reference: [10] Hara, T., Yoneyama, T.: On the Global Center of Generalized Liénard Equation and its Application to Stability Problems.Funkcial. Ekvac. 28 (1985), 171–192. Zbl 0585.34038, MR 0816825
Reference: [11] Hara, T., Yoneyama, T.: On the Global Center of Generalized Liénard Équation and its Application to Stability Problems II.Funkcial. Ekvac. 31 (1988), 221–225. Zbl 0696.34041, MR 0961749
Reference: [12] Hricišáková, D.: Existence of ultimately positive (negative) solutions of generalized Liénard equation.EQUADIFF 7, Praha 1989.
Reference: [13] Hricišáková, D.: Continuability and (non)oscilatory properties of solutions of generalized Liénard equation.Hiroshima Math. J. Vol. 20, No. 1., March 1990, 11–22. MR 1050422
Reference: [14] Hricišáková, D.: Existence of positive solutions of Liénard differential equation.J. of Mathematical analysis and applications, San Diego, California, Vol. 176, No. 2, July 1, 1993, 545–553.
Reference: [15] Lefschetz, S.: Existence of periodic solutions for certain differential equations.Proc. Nat. Acad. Sci. USA 29 (1943), 29–32. Zbl 0061.19002, MR 0007462
Reference: [16] Lefschetz, S.: Lectures on differential equations.Ann. Math. Stud. 14, Princeton 1948.
Reference: [17] Levi-Civita, T.: Sopra alcuni criteri di instabilita.Ann. Mat. Pura Appl. 5 (1901), 221–301.
Reference: [18] Ljapunov, M. A.: Das allgemeine Problem der Stabilität einer Bewegung.Math. Gesselsch. Charkov 1892.
Reference: [19] Liénard, A.: Étude des oscillations autoentretenues.Rev. Gén. Élec. 23 (1928), 901–902, 946–954.
Reference: [20] Mawhin, J., Everitt, W. N., Sleeman, B. D.: Periodic oscillations of forced pendulum-like equations.In Ordinary and Partial Differential Equations . (W. N. Everitt and B. D. Sleeman, Eds.) Lecture Notes in Mathematics Vol. 924, Springer-Verlag Berlin/New York 1982, 458–476. MR 0693131
Reference: [21] Mawhin, J., Willem, M.: Multiple solutions of the periodic boundary value problem for some pendulum-type equations.J. Differential Equations 52 (1984), 264–287. MR 0741271
Reference: [22] Minorsky, N.: Nonlinear Oscillations.Van Nostrand, Princeton, NJ, 1962. Zbl 0102.30402, MR 0137891
Reference: [23] Mizohata, S., Yamaguti, M.: On the existence of periodic solutions of the nonlinear differential equation $\ddot{x}+\alpha (\dot{x})+Q(x)=p(t)$.Mem. Coll. Sci. Univ. Kyoto Sect. A 27 (1952), 142–156. MR 0054127
Reference: [24] Nemickij, V. V., Stepanov, V. V.: Theorie der Differentialgleichungen.Moskva 1949.
Reference: [25] Opial, Z.: Sur un théoréme de A.Filippoff. Ann. Polon. Math. 5 (1958), 67–75. Zbl 0085.07402, MR 0097584
Reference: [26] Poincaré, H.: Mémoires sur les courbes définies par une équation différentielle.J. Math. Pures Appl. 7 (1881), 375–422, 8 (1882), 251–296, 1 (1885), 167–224, 2 (1886), 151–217.
Reference: [27] Poincaré, H.: Les méthodes nouvelles de la mécanique céleste.Paris 1892.
Reference: [28] Pol, B. van der: A theory of the amplitude of free and forced triode vibrations.Radio Reviews I (1920), 701–710.
Reference: [29] Reissig, R.: Schwingungssätze für die verallgemeinerte Liénardsche Differentialgleichung.Abh. Math. Sem. Univ. Hamburg 44 (1957), 45–51. MR 0454178
Reference: [30] Reissig R., Sansone G., Conti R.: Qualitative Theorie Nichtlinearer Differentialgleichungen.Edizioni Cremonese, Roma 1963. MR 0158121
Reference: [31] Sansone, G.: Sopra l’equazione di A.Liénard per le oscillazioni di rilassamento. Ann. Mat. Pura Appl. 28 (1949), 153–181. Zbl 0037.19001, MR 0037430
Reference: [32] Wu, K.: The existence of limit cycles for a nonlinear system.Acta Math. Sinica 25 (1982), 456–463. Zbl 0505.34024, MR 0677158
Reference: [33] Zanolin, F.: Remarks on multiple periodic solutions for nonlinear ordinary differential systems of Liénard type.Boll. Un. Mat. Ital. 8(6) (1982), 683–698. Zbl 0506.34040, MR 0666597
Reference: [34] Zeng, X.: An existence and uniqueness theorem of limit cycles of Liénard equation.Acta Math. Sinica 21 (1978), 263–269 (Chinese). Zbl 0394.34023, MR 0511726
.

Files

Files Size Format View
PokrokyMFA_39-1994-1_3.pdf 1.348Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo