Previous |  Up |  Next

Article

Title: E. T. a infinitární Churchova teze (Czech)
Title: ET and infinitary Church's thesis (English)
Author: Baer, Robert M.
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 41
Issue: 2
Year: 1996
Pages: 82-89
.
Category: math
.
MSC: 00A08
MSC: 03-01
MSC: 03D10
MSC: 03D20
idZBL: Zbl 0871.03032
idMR: MR1454824
Note: Z The Mathematical Intelligencer 17 (1995), 57-61, přeložil J. Fiala. (Czech)
Note: From The Mathematical Intelligencer 17 (1995), 57-61, translated by J. Fiala. (English)
.
Date available: 2010-12-11T14:25:49Z
Last updated: 2012-08-25
Stable URL: http://hdl.handle.net/10338.dmlcz/139432
.
Reference: [1] Baer, R. M.: Computability by normal algorithms.Proc. Am. Math. Soc. 20 (1969), 551–552. MR 0255401
Reference: [2] Davis, M.: Computability & Unsolvability.New York: McGraw-Hill (1958). Zbl 0080.00902, MR 0347574
Reference: [3] Davis, M.: Why Gödel didn’t have Church’s Thesis.Inform. Control 54 (1982), 3–24. Zbl 0519.03033, MR 0713305
Reference: [4] Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer.Proc. Roy. Soc. London Ser. A 400 (1985), 97–117. Zbl 0900.81019, MR 0801665
Reference: [5] Fischler, W., Morgan, D., Polchinski, J.: Quantization of false-vacuum bubbles; a Hamiltonian treatement of gravitational tunneling.Phys. Rev. D 42 (1990), 4042–4055. MR 1082899
Reference: [6] Gandy, R.: The confluence of ideas in 1936.In The Universal Turing Machine: A Half-Century Survey (R. Herken, ed.), Hamburg: Kammerer & Unverzagt (1988). Zbl 0689.01010, MR 1011468
Reference: [7] Goodman, N. D.: Intensions, Church’s Thesis, and the formalization of mathematics.Notre Dame J. Formal Logic 28 (1987), 473–489. Zbl 0656.03004, MR 0912643
Reference: [8] Kleene, S. C.: Reflections on Church’s thesis.Notre Dame J. Formal Logic 28 (1987), 490–498. Zbl 0649.03001, MR 0912644
Reference: [9] Kreisel, G.: Church’s thesis and the ideal of formal rigour.Notre Dame J. Formal Logic 28 (1987), 499–519. MR 0912645
Reference: [10] Kreisel, G.: Church’s Thesis: a kind of reducibility axiom for constructive mathematics.In Intuicionism and Proof Theory: Proceedings of the Summer Conference at Buffalo, N. Y. (A. Kino, J. Myhill, R. E. Vesley, eds.), Amsterdam: North-Holland (1970). Zbl 0199.30001, MR 0278903
Reference: [11] Lopez-Escobar, E. G. K.: Remarks on an infinitary language with constructive formulas.J. Symbol. Logic 32 (1967), 305–318. MR 0230608
Reference: [12] Lopez-Escobar, E. G. K.: Infinite rules in finite systems.In Nonclassical Logics, Model Theory and Computability (A. I. Arruda, N. C. A da Costa, and R. Chuaqui, eds.), Amsterdam: North-Holland (1977). Zbl 0386.03026, MR 0476477
Reference: [13] Rosen, R.: Church’s Thesis and its relation to the concept of realizability in biology and physics.Bull. Math. Biophys. 24 (1962), 375–393. Zbl 0118.34605
Reference: [14] Webb, J. C.: Mechanism, Mentalism, and Metamathematics.Dordrecht: Reidel (1980). Zbl 0454.03001, MR 0598635
.

Files

Files Size Format View
PokrokyMFA_41-1996-2_3.pdf 945.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo