Title:
|
E. T. a infinitární Churchova teze (Czech) |
Title:
|
ET and infinitary Church's thesis (English) |
Author:
|
Baer, Robert M. |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
41 |
Issue:
|
2 |
Year:
|
1996 |
Pages:
|
82-89 |
. |
Category:
|
math |
. |
MSC:
|
00A08 |
MSC:
|
03-01 |
MSC:
|
03D10 |
MSC:
|
03D20 |
idZBL:
|
Zbl 0871.03032 |
idMR:
|
MR1454824 |
Note:
|
Z The Mathematical Intelligencer 17 (1995), 57-61, přeložil J. Fiala. (Czech) |
Note:
|
From The Mathematical Intelligencer 17 (1995), 57-61, translated by J. Fiala. (English) |
. |
Date available:
|
2010-12-11T14:25:49Z |
Last updated:
|
2012-08-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/139432 |
. |
Reference:
|
[1] Baer, R. M.: Computability by normal algorithms.Proc. Am. Math. Soc. 20 (1969), 551–552. MR 0255401 |
Reference:
|
[2] Davis, M.: Computability & Unsolvability.New York: McGraw-Hill (1958). Zbl 0080.00902, MR 0347574 |
Reference:
|
[3] Davis, M.: Why Gödel didn’t have Church’s Thesis.Inform. Control 54 (1982), 3–24. Zbl 0519.03033, MR 0713305 |
Reference:
|
[4] Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer.Proc. Roy. Soc. London Ser. A 400 (1985), 97–117. Zbl 0900.81019, MR 0801665 |
Reference:
|
[5] Fischler, W., Morgan, D., Polchinski, J.: Quantization of false-vacuum bubbles; a Hamiltonian treatement of gravitational tunneling.Phys. Rev. D 42 (1990), 4042–4055. MR 1082899 |
Reference:
|
[6] Gandy, R.: The confluence of ideas in 1936.In The Universal Turing Machine: A Half-Century Survey (R. Herken, ed.), Hamburg: Kammerer & Unverzagt (1988). Zbl 0689.01010, MR 1011468 |
Reference:
|
[7] Goodman, N. D.: Intensions, Church’s Thesis, and the formalization of mathematics.Notre Dame J. Formal Logic 28 (1987), 473–489. Zbl 0656.03004, MR 0912643 |
Reference:
|
[8] Kleene, S. C.: Reflections on Church’s thesis.Notre Dame J. Formal Logic 28 (1987), 490–498. Zbl 0649.03001, MR 0912644 |
Reference:
|
[9] Kreisel, G.: Church’s thesis and the ideal of formal rigour.Notre Dame J. Formal Logic 28 (1987), 499–519. MR 0912645 |
Reference:
|
[10] Kreisel, G.: Church’s Thesis: a kind of reducibility axiom for constructive mathematics.In Intuicionism and Proof Theory: Proceedings of the Summer Conference at Buffalo, N. Y. (A. Kino, J. Myhill, R. E. Vesley, eds.), Amsterdam: North-Holland (1970). Zbl 0199.30001, MR 0278903 |
Reference:
|
[11] Lopez-Escobar, E. G. K.: Remarks on an infinitary language with constructive formulas.J. Symbol. Logic 32 (1967), 305–318. MR 0230608 |
Reference:
|
[12] Lopez-Escobar, E. G. K.: Infinite rules in finite systems.In Nonclassical Logics, Model Theory and Computability (A. I. Arruda, N. C. A da Costa, and R. Chuaqui, eds.), Amsterdam: North-Holland (1977). Zbl 0386.03026, MR 0476477 |
Reference:
|
[13] Rosen, R.: Church’s Thesis and its relation to the concept of realizability in biology and physics.Bull. Math. Biophys. 24 (1962), 375–393. Zbl 0118.34605 |
Reference:
|
[14] Webb, J. C.: Mechanism, Mentalism, and Metamathematics.Dordrecht: Reidel (1980). Zbl 0454.03001, MR 0598635 |
. |