Title:
|
A new characterization of Mathieu groups (English) |
Author:
|
Shao, Changguo |
Author:
|
Jiang, Qinhui |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
46 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
13-23 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group and $\operatorname{nse}(G)$ the set of numbers of elements with the same order in $G$. In this paper, we prove that a finite group $G$ is isomorphic to $M$, where $M$ is one of the Mathieu groups, if and only if the following hold:
(1) $|G|=|M|$,
(2) $\operatorname{nse}(G)=\operatorname{nse}(M)$. (English) |
Keyword:
|
finite group |
Keyword:
|
solvable group |
Keyword:
|
order of element |
MSC:
|
20D06 |
MSC:
|
20D60 |
idZBL:
|
Zbl 1227.20007 |
idMR:
|
MR2644451 |
. |
Date available:
|
2010-04-22T10:41:08Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/139992 |
. |
Reference:
|
[1] Cao, Z. F.: $S(2,3,5,7,11)$ and simple $K_n$-group.J. Heilongjiang Univ. Natur. Sci. 15 (2) (1998), 1–5, in Chinese. MR 1671457 |
Reference:
|
[2] Cao, Z. F.: Diophantine equation and it’s application.Shanghai Jiaotong University Press, 2000, in Chinese. |
Reference:
|
[3] Chillag, D., Herzog, M.: On the length of the conjugacy classes of finite groups.J. Algebra 131 (1) (1990), 110–125. Zbl 0694.20015, MR 1055001, 10.1016/0021-8693(90)90168-N |
Reference:
|
[4] Conway, J. H., Curtis, R. T., etc., S. P. Norton: Atlas of Finite Groups.Oxford, Clarendon Press, 1985. Zbl 0568.20001, MR 0827219 |
Reference:
|
[5] Cossey, J., Wang, Y.: Remarks on the length of conjugacy classes of finite groups.Comm. Algebra 27 (9) (1999), 4347–4353. Zbl 0948.20010, MR 1705872, 10.1080/00927879908826701 |
Reference:
|
[6] Hall, P.: A note on soluble groups.J. London Math. Soc. 3 (2) (1928), 98–105. 10.1112/jlms/s1-3.2.98 |
Reference:
|
[7] Herzog, M.: On finite simple groups of order divisible by three primes only.J. Algebra 120 (10) (1968), 383–388. MR 0233881, 10.1016/0021-8693(68)90088-4 |
Reference:
|
[8] Ito, N.: Simple groups of conjugate type rank 4.J. Algebra 20 (1972), 226–249. Zbl 0228.20004, MR 0289636, 10.1016/0021-8693(72)90057-9 |
Reference:
|
[9] Jafarzadeh, A., Iranmanesh, A.: On simple $K_n$-groups for $n=5, 6$.London Math. Soc. Lecture Note Ser. (Campbell, C. M., Quick, M. R., Robertson, E. F., Smith, G. C., eds.), Cambridge University Press, 2007. Zbl 1115.20009 |
Reference:
|
[10] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups.Springer-Verlag Berlin, 2004. Zbl 1047.20011, MR 2014408 |
Reference:
|
[11] Shi, W. J.: A new characterization of the sporadic simple groups.Group Theory, Proc. of the 1987 Singapore Conf., Walter de Gruyter, Berlin, 1989, pp. 531–540. Zbl 0657.20017, MR 0981868 |
Reference:
|
[12] Shi, W. J.: On simple $K_4$-groups.Chinese Sci. Bull. 36 (17) (1991), 1281–1283, in Chinese. |
Reference:
|
[13] Shi, W. J.: The quantitative structure of groups and related topics.Math. Appl. (China Ser.) 365 (1996), 163–181, Kluwer Acad. Publ., Dordrecht. Zbl 0872.20026, MR 1447204 |
Reference:
|
[14] Shi, W. J.: Pure quantitative characterization of finite simple groups.Front. Math. China 2 (1) (2007), 123–125. Zbl 1198.20016, MR 2289913, 10.1007/s11464-007-0008-3 |
. |