Previous |  Up |  Next

Article

Title: A new characterization of Mathieu groups (English)
Author: Shao, Changguo
Author: Jiang, Qinhui
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 1
Year: 2010
Pages: 13-23
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group and $\operatorname{nse}(G)$ the set of numbers of elements with the same order in $G$. In this paper, we prove that a finite group $G$ is isomorphic to $M$, where $M$ is one of the Mathieu groups, if and only if the following hold: (1) $|G|=|M|$, (2) $\operatorname{nse}(G)=\operatorname{nse}(M)$. (English)
Keyword: finite group
Keyword: solvable group
Keyword: order of element
MSC: 20D06
MSC: 20D60
idZBL: Zbl 1227.20007
idMR: MR2644451
.
Date available: 2010-04-22T10:41:08Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/139992
.
Reference: [1] Cao, Z. F.: $S(2,3,5,7,11)$ and simple $K_n$-group.J. Heilongjiang Univ. Natur. Sci. 15 (2) (1998), 1–5, in Chinese. MR 1671457
Reference: [2] Cao, Z. F.: Diophantine equation and it’s application.Shanghai Jiaotong University Press, 2000, in Chinese.
Reference: [3] Chillag, D., Herzog, M.: On the length of the conjugacy classes of finite groups.J. Algebra 131 (1) (1990), 110–125. Zbl 0694.20015, MR 1055001, 10.1016/0021-8693(90)90168-N
Reference: [4] Conway, J. H., Curtis, R. T., etc., S. P. Norton: Atlas of Finite Groups.Oxford, Clarendon Press, 1985. Zbl 0568.20001, MR 0827219
Reference: [5] Cossey, J., Wang, Y.: Remarks on the length of conjugacy classes of finite groups.Comm. Algebra 27 (9) (1999), 4347–4353. Zbl 0948.20010, MR 1705872, 10.1080/00927879908826701
Reference: [6] Hall, P.: A note on soluble groups.J. London Math. Soc. 3 (2) (1928), 98–105. 10.1112/jlms/s1-3.2.98
Reference: [7] Herzog, M.: On finite simple groups of order divisible by three primes only.J. Algebra 120 (10) (1968), 383–388. MR 0233881, 10.1016/0021-8693(68)90088-4
Reference: [8] Ito, N.: Simple groups of conjugate type rank 4.J. Algebra 20 (1972), 226–249. Zbl 0228.20004, MR 0289636, 10.1016/0021-8693(72)90057-9
Reference: [9] Jafarzadeh, A., Iranmanesh, A.: On simple $K_n$-groups for $n=5, 6$.London Math. Soc. Lecture Note Ser. (Campbell, C. M., Quick, M. R., Robertson, E. F., Smith, G. C., eds.), Cambridge University Press, 2007. Zbl 1115.20009
Reference: [10] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups.Springer-Verlag Berlin, 2004. Zbl 1047.20011, MR 2014408
Reference: [11] Shi, W. J.: A new characterization of the sporadic simple groups.Group Theory, Proc. of the 1987 Singapore Conf., Walter de Gruyter, Berlin, 1989, pp. 531–540. Zbl 0657.20017, MR 0981868
Reference: [12] Shi, W. J.: On simple $K_4$-groups.Chinese Sci. Bull. 36 (17) (1991), 1281–1283, in Chinese.
Reference: [13] Shi, W. J.: The quantitative structure of groups and related topics.Math. Appl. (China Ser.) 365 (1996), 163–181, Kluwer Acad. Publ., Dordrecht. Zbl 0872.20026, MR 1447204
Reference: [14] Shi, W. J.: Pure quantitative characterization of finite simple groups.Front. Math. China 2 (1) (2007), 123–125. Zbl 1198.20016, MR 2289913, 10.1007/s11464-007-0008-3
.

Files

Files Size Format View
ArchMathRetro_046-2010-1_2.pdf 499.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo