Previous |  Up |  Next

Article

Title: Free algebras in varieties (English)
Author: Pavlík, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 1
Year: 2010
Pages: 25-38
Summary lang: English
.
Category: math
.
Summary: We define varieties of algebras for an arbitrary endofunctor on a cocomplete category using pairs of natural transformations. This approach is proved to be equivalent to one of equational classes defined by equation arrows. Free algebras in the varieties are investigated and their existence is proved under the assumptions of accessibility. (English)
Keyword: cocomplete category
Keyword: free algebra
Keyword: variety
Keyword: natural transformation
MSC: 08C05
MSC: 18C05
MSC: 18C20
idZBL: Zbl 1240.08005
idMR: MR2644452
.
Date available: 2010-04-22T10:41:52Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/139993
.
Reference: [1] Adámek, J.: Free algebras and automata realizations in the language of categories.Comment. Math. Univ. Carolin. 015 (4) (1974), 589–602. MR 0352209
Reference: [2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and concrete categories.Free Software Foundation, 1990/2006. MR 1051419
Reference: [3] Adámek, J., Porst, H.: From varieties of algebras to covarieties of coalgebras.Math. Structures Comput. Sci. (2001). Zbl 1260.08004
Reference: [4] Adámek, J., Rosický, J.: Locally presentable and accessible categories.Cambridge University Press, 1994. MR 1294136
Reference: [5] Adámek, J., Trnková, V.: Birkhoff’s variety theorem with and without free algebras.Theory Appl. Categ. 14 (18) (2005), 424–450. Zbl 1086.18003, MR 2211426
Reference: [6] Barr, M.: Coequalizers and free triples.Math. Z. 116 (1970), 307–322. Zbl 0194.01701, MR 0272849, 10.1007/BF01111838
Reference: [7] Kelly, G. M.: A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on.Bull. Austral. Math. Soc. 22 (1) (1980), 1–83. Zbl 0437.18004, MR 0589937, 10.1017/S0004972700006353
Reference: [8] MacLane, S.: Categories for the working mathematician.Springer-Verlag, 1971. MR 0354798
Reference: [9] Reiterman, J.: One more categorical model of universal algebra.Math. Z. 161 (2) (1978), 137–146. Zbl 0363.18007, MR 0498325, 10.1007/BF01214925
Reference: [10] Reiterman, J.: On locally small based algebraic theories.Comment. Math. Univ. Carolin. 27 (2) (1986), 325–340. Zbl 0598.18003, MR 0857552
.

Files

Files Size Format View
ArchMathRetro_046-2010-1_3.pdf 516.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo