Previous |  Up |  Next

Article

Title: Yang-Mills bar connections over compact Kähler manifolds (English)
Author: Vân Lê, Hông
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 1
Year: 2010
Pages: 47-69
Summary lang: English
.
Category: math
.
Summary: In this note we introduce a Yang-Mills bar equation on complex vector bundles $E$ provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on $E$ can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among a class of Yang-Mills bar connections over compact Käahler manifolds of positive Ricci curvature. (English)
Keyword: Kähler manifold
Keyword: complex vector bundle
Keyword: holomorphic connection
Keyword: Yang-Mills bar gradient flow
MSC: 53C44
MSC: 53C55
MSC: 58E99
idZBL: Zbl 1240.53118
idMR: MR2644454
.
Date available: 2010-04-22T10:43:30Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/139995
.
Reference: [1] Bourguignon, J. P., Lawson, H. B.: Stability phenomena for Yang-Mills fields.Commun. Math. Phys. 79 (1981), 189–230. MR 0612248, 10.1007/BF01942061
Reference: [2] Donaldson, S. K., Kronheimer, P. B.: The geometry of 4-manifolds.Clarendon Press, Oxford, 1990. MR 1079726
Reference: [3] Griffiths, P., Harris, J.: Principles of algebraic geometry.2nd ed., Wiley Classics Library, New York, 1994. Zbl 0836.14001, MR 1288523
Reference: [4] Hamilton, R.: Three manifold with positive Ricci curvature.J. Differential Geom. 17 (2) (1982), 255–306. MR 0664497
Reference: [5] Kobayashi, S.: Differential geometry of complex vector bundles.Iwanami Shoten Publishers and Princeton University Press, 1987. Zbl 0708.53002, MR 0909698
Reference: [6] Koszul, J. L., Malgrange, B.: Sur certaines structures fibres complexes.Arch. Math. (Basel) 9 (1958), 102–109. MR 0131882, 10.1007/BF02287068
.

Files

Files Size Format View
ArchMathRetro_046-2010-1_5.pdf 568.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo