Previous |  Up |  Next

Article

Title: Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$ (English)
Author: Ali, Ahmad T.
Author: López, Rafael
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 1
Year: 2010
Pages: 39-46
Summary lang: English
.
Category: math
.
Summary: We consider a unit speed timelike curve $\alpha $ in Minkowski 4-space ${\mathbf{E}}_1^4$ and denote the Frenet frame of $\alpha $ by $\lbrace {\mathbf{T}}, {\mathbf{N}}, {\mathbf{B}}_1, {\mathbf{B}}_2\rbrace $. We say that $\alpha $ is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction $U$ of ${\mathbf{E}}_1^4$. In this work we study those helices where the function $\langle {\mathbf{B}}_2,U\rangle $ is constant and we give different characterizations of such curves. (English)
Keyword: Minkowski space
Keyword: timelike curve
Keyword: Frenet equations
Keyword: slant helix
MSC: 53B30
MSC: 53C50
idZBL: Zbl 1240.53115
idMR: MR2644453
.
Date available: 2010-04-22T10:42:44Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/139994
.
Reference: [1] Barros, M.: General helices and a theorem of Lancret.Proc. Amer. Math. Soc. 125 (1997), 1503–1509. Zbl 0876.53035, MR 1363411, 10.1090/S0002-9939-97-03692-7
Reference: [2] Erdoǧan, M., Yilmaz, G.: Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space.Int. J. Contemp. Math. Sci. 3 (2008), 1113–1120. Zbl 1160.53331, MR 2477940
Reference: [3] Ferrandez, A., Gimenez, A., Luca, P.: Null helices in Lorentzian space forms.Int. J. Mod. Phys. A 16 (2001), 4845–4863. MR 1873162, 10.1142/S0217751X01005821
Reference: [4] Gluck, H.: Higher curvatures of curves in Eulidean space.Amer. Math. Monthly 73 (1996), 699–704. MR 0198355, 10.2307/2313974
Reference: [5] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces.Turkish J. Math. 28 (2004), 531–537. Zbl 1081.53003, MR 2062560
Reference: [6] Kocayiǧit, H., Önder, M.: Timelike curves of constant slope in Minkowski space ${\mathbf{E}}_1^4$.J. Science Techn. Beykent Univ. 1 (2007), 311–318.
Reference: [7] Kula, L., Yayli, Y.: On slant helix and its spherical indicatrix.Appl. Math. Comput. 169 (2005), 600–607. Zbl 1083.53006, MR 2171171, 10.1016/j.amc.2004.09.078
Reference: [8] Millman, R. S., Parker, G. D.: Elements of differential geometry.Prentice-Hall Inc., Englewood Cliffs, N. J., 1977. Zbl 0425.53001, MR 0442832
Reference: [9] Önder, M., Kazaz, M., Kocayiǧit, H., Kilic, O.: $B_2$-slant helix in Euclidean 4-space $E^4$.Int. J. Contemp. Math. Sci. 3 (29) (2008), 1433–1440. Zbl 1175.14019, MR 2514022
Reference: [10] O’Neill, B.: Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics.vol. 103, Academic Press, Inc., New York, 1983. MR 0719023
Reference: [11] Petrovic-Torgasev, M., Sucurovic, E.: W-curves in Minkowski spacetime.Novi Sad J. Math. 32 (2002), 55–65. MR 1949817
Reference: [12] Scofield, P. D.: Curves of constant precession.Amer. Math. Monthly 102 (1995), 531–537. Zbl 0881.53002, MR 1336639, 10.2307/2974768
Reference: [13] Synge, J. L.: Timelike helices in flat space-time.Proc. Roy. Irish Acad. Sect. A 65 (1967), 27–42. Zbl 0152.45901, MR 0208976
.

Files

Files Size Format View
ArchMathRetro_046-2010-1_4.pdf 470.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo