Previous |  Up |  Next

Article

Title: A new Nyquist-based technique for tuning robust decentralized controllers (English)
Author: Kozáková, Alena
Author: Veselý, Vojtech
Author: Osuský, Jakub
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 1
Year: 2009
Pages: 63-83
Summary lang: English
.
Category: math
.
Summary: An original Nyquist-based frequency domain robust decentralized controller (DC) design technique for robust stability and guaranteed nominal performance is proposed, applicable for continuous-time uncertain systems described by a set of transfer function matrices. To provide nominal performance, interactions are included in individual design using one selected characteristic locus of the interaction matrix, used to reshape frequency responses of decoupled subsystems; such modified subsystems are termed ``equivalent subsystems". Local controllers of equivalent subsystems independently tuned for stability and specified feasible performance constitute the decentralized controller guaranteeing specified performance of the full system. To guarantee robust stability, the $M-\Delta$ stability conditions are derived. Unlike standard robust approaches, the proposed technique considers full nominal model, thus reducing conservativeness of resulting robust stability conditions. The developed frequency domain design procedure is graphical, interactive and insightful. A case study providing a step-by-step robust DC design for the Quadruple Tank Process [K.H. Johansson: Interaction bounds in multivariable control systems. Automatica 38 (2002), 1045–1051] is included. (English)
Keyword: multivariable system
Keyword: decentralized controller
Keyword: frequency domain
Keyword: independent design
Keyword: robust stability
Keyword: unstructured uncertainty
MSC: 93A14
MSC: 93C80
MSC: 93D09
MSC: 93D15
idZBL: Zbl 1158.93392
idMR: MR2489581
.
Date available: 2010-06-02T18:19:59Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140004
.
Reference: [1] M. S. Chiu and Y. Arkun: A methodology for sequential design of robust decentralized control systems.Automatica 28 (1992), 997–1001. MR 1179702
Reference: [2] M. Hovd and S. Skogestad: Improved independent design of robust decentralized controllers.In: 12th IFAC World Congress, Vol. 5, Sydney 1993, pp. 271–274.
Reference: [3] M. Hovd and S. Skogestad: Sequential design of decentralized controllers.Automatica 30, (1994), 1601–1607. MR 1299384
Reference: [4] A. İftar: Decentralized robust control nased on overlapping decompositions.In: 10th IFAC Symposium om Large Scale Systems, Osaka 2004, pp. 605–609.
Reference: [5] A. İftar: Decentralized robust control of large-scale time-delay systems.In: 17th IFAC World Congress, Seoul 2008, CD-ROM.
Reference: [6] A. İftar and U. Özgüner: Decentralized LQG/LTR controller design for interconnected systems.In: Proc. American Control Conference, Minneapolis 1987, pp. 1682–1687.
Reference: [7] A. İftar and U. Özgüner: Local LQG/LTR controller design for decentralized systems.IEEE Trans. Automat. Control AC-32 (1987), 926–930.
Reference: [8] K. H. Johansson: Interaction bounds in multivariable control systems.Automatica 38 (2002), 1045–1051. Zbl 1018.93013, MR 2135100
Reference: [9] A. Kozáková: Robust decentralized control of complex systems in the frequency domain.In: 2nd IFAC Workshop New Trends in Design of Control Systems, Elsevier Kidlington UK, 1998.
Reference: [10] A. Kozáková and V. Veselý: A frequency domain design technique for robust decentralized controllers.In: 16th IFAC World Congress, Prague 2005, Mo-E21-TO/6, CD-ROM.
Reference: [11] A. Kozáková and V. Veselý: Improved tuning technique for robust decentralized PID controllers.In: 11th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems Theory and Applications, Gdansk 2007, CD-ROM.
Reference: [12] A. Kozáková and V. Veselý: Robust decentralized controller design with additive affine-type uncertainty.Internat. J. Innovative Computing, Information and Control (IJICIC), 3 (2007), 5, 1109–1120.
Reference: [13] W. L. Luyben and A. Jutan: Simple method for tuning SISO controllers in multivariable system.Indust. Eng. Chem. Process Development 25 (1986), 654–660.
Reference: [14] A. G. J. MacFarlane and I. Postlethwaite: The generalized Nyquist stability criterion and multivariable root loci.Internat. J. Control 25 (1977), 81–127. MR 0439341
Reference: [15] D. Q. Mayne: The design of linear multivariable systems.Automatica 9 (1973), 201–207. Zbl 0249.93022, MR 0453045
Reference: [16] J. J. Neymark: Dynamical Systems and Controlled Processes.Nauka, Moscow 1978 (in Russian).
Reference: [17] X. Qiang, C. Wen-Jian, and H. Ming: A practical decentralized auto-tuning method for TITO systems under closed-loop control.Internat. J. Innovative Computing, Information and Control (IJICIC) 2 (2006), 305–322.
Reference: [18] H. Schmidt and E. W. Jacobsen: Selecting control configurations for performance with independent design.Comput. Chem. Engrg. 27 (2003), 101–109.
Reference: [19] S. Skogestad and M. Morari: Robust performance of decentralized control systems by independent designs.Automatica 25 (1989), 119–125. MR 0986579
Reference: [20] S. Skogestad and I. Postlethwaite: Multivariable Feedback Control: Analysis and Design.Third edition. Wiley, Chichester – New York – Brisbane – Toronto – Singapore 1996.
Reference: [21] V. Veselý: Large scale dynamic system stabilization using the principle of dominant subsystem approach.Kybernetika 29 (1993), 1, 48–61. MR 1227741
.

Files

Files Size Format View
Kybernetika_45-2009-1_6.pdf 1.223Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo