Previous |  Up |  Next

Article

Title: Passivity based stabilization of non-minimum phase nonlinear systems (English)
Author: Travieso-Torres, Juan C.
Author: Duarte-Mermoud, Manuel A.
Author: Zagalak, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 3
Year: 2009
Pages: 417-426
Summary lang: English
.
Category: math
.
Summary: A cascade scheme for passivity-based stabilization of a wide class of nonlinear systems is proposed in this paper. Starting from the definitions and basic concepts of passivity-based stabilization via feedback (which are applicable to minimum phase nonlinear systems expressed in their normal forms) a cascade stabilization scheme is proposed for minimum and non-minimum phase nonlinear systems where the constraint of stable zero dynamics imposed by previous stabilization approaches is abandoned. Simulation results of the proposed algorithm are presented to demonstrate its performance. (English)
Keyword: nonlinear systems
Keyword: stabilization
Keyword: passivity
Keyword: state feedback
MSC: 93C10
MSC: 93D15
MSC: 93D99
idZBL: Zbl 1165.93333
idMR: MR2543131
.
Date available: 2010-06-02T18:39:51Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140015
.
Reference: [1] S. Behtach and S. Sastry: Stabilization of nonlinear systems with uncontrollable linearization.IEEE Trans. Automat. Control 33 (1988) 585–590. MR 0940781
Reference: [2] C. I. Byrnes, A. Isidori and J. C. Willems: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems.IEEE Trans. Automat. Control 36 (1991), 11, 1228–1240. MR 1130493
Reference: [3] D. Cheng and C. Martin: Stabilization of nonlinear systems via designed center manifold.IEEE Trans. Automat. Control 46 (2001), 1372–1383. MR 1853679
Reference: [4] C. A. Desoer and M. Vidyasagar: Feedback Systems: Input-Output Properties.Academic Press, New York 1975. MR 0490289
Reference: [5] S. Devasia, D. Chen, and B. Paden: Nonlinear inversion based output tracking.IEEE Trans. Automat. Control 41 (1996), 930–942. MR 1398777
Reference: [6] S. Devasia and P. Paden: Exact output tracking for nonlinear time-varying system.In: Proc. IEEE Conference on Decision and Control 1994, pp. 2346–2355.
Reference: [7] L. Diao and M. Guay: Output feedback stabilization of uncertain non-minimum phase nonlinear systems.In: Proc. 2004 American Control Conference, Boston 2004, ThP13.2.
Reference: [8] Z. Ding: Semi-global stabilization of a class of non-minimum phase non-linear output-feedback systems.IEE Proc. Control Theory Appl. 152 (2005), 4, 460–464.
Reference: [9] M. A. Duarte-Mermoud, R. Castro-Linares A. and Castillo-Facuse: Adaptive passivity of nonlinear systems using time-varying gains.Dynamics Control 11 (2001), 4, 333–351. MR 1935467
Reference: [10] M. A. Duarte-Mermoud, R. Castro-Linares, and A. Castillo-Facuse: Direct passivity of a class of MIMO nonlinear systems using adaptive feedback.Internat. J. Control 75 (2002), 1, 23–33. MR 1878471
Reference: [11] A. Duarte-Mermoud and J. C. Travieso: Control of induction motors: An adaptive passivity MIMO perspective.Internat. J. Adaptive Control Signal Process. 17 (2003), 4, 313–332.
Reference: [12] D. Hill and P. Moylan: Stability results for nonlinear feedback systems.Automatica 13 (1977), 373–382.
Reference: [13] A. Isidori: Nonlinear Control Systems.Third edition. Springer-Verlag, Berlin – Heigelberg – New York 1995. Zbl 0931.93005
Reference: [14] A. Isidori: A too1 for semiglobal stabilization of uncertain non-minimum-phase nonlinear system via output feedback.IEEE Trans. Automat. Control 45 (2000), 10, 1817–1827. MR 1795350
Reference: [15] P. V. Kokotovic and M. Arcak: Constructive nonlinear control: A historical perspective.Automatica 37 (2001), 637–662. MR 1832954
Reference: [16] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic: Nonlinear and Adaptive Control Design.Wiley, New York 1995.
Reference: [17] M. A. Duarte-Mermoud, J. M. Méndez-Miquel, R. Castro-Linares. and A. Castillo-Facuse: Adaptive passivation with time-varying gains of MIMO nonlinear systems.Kybernetes 32 (2003), 9/10, 1342–1368.
Reference: [18] K. Narendra and A. Annaswamy: Stable Adaptive Systems.Prentice-Hall, Englewood Cliffs, N.J. 1988.
Reference: [19] B. A. Ogunnaike and W. H. Ray: Process Dynamics Modeling and Control.First edition. Oxford – New York 1994.
Reference: [20] C. J. Tomlin and S. S. Sastry: Bounded tracking for non-minimum phase system with fast zero dynamics.Internat. J. Control 68 (1998), 819–847. MR 1689727
Reference: [21] J. C. Willems: Dissipative dynamical systems Part I: General theory.Arch. Rational Mech. Anal. 45 (1972), 325–351.
Reference: [22] J. C. Willems: Dissipative dynamical systems Part II: Linear systems with quadratic supply rates.Arch. Rational Mech. Anal. 45 (1972), 352–393. MR 0527463
Reference: [23] R. A. Wright and C. Kravaris: Nonminimum-phase compensation for nonlinear processes.AIChE J. 38 (1992), 26–40. MR 1144842
Reference: [24] B. J. Yang and A. J. Calise: Adaptive stabilization for a class of non-affine non-minimum phase systems using neural networks.In: Proc. 2006 American Control Conference, Minneapolis 2006, ThA05.6, pp. 2291–2296.
.

Files

Files Size Format View
Kybernetika_45-2009-3_4.pdf 970.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo