Previous |  Up |  Next

Article

Title: Unifying approach to observer-filter design (English)
Author: Černý, Václav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 3
Year: 2009
Pages: 445-457
Summary lang: English
.
Category: math
.
Summary: The paper examines similarities between observer design as introduced in Automatic Control Theory and filter design as established in Signal Processing. It is shown in the paper that there are obvious connections between them in spite of different aims for their design. Therefore, it is prospective to make them be compatible from the structural point of view. Introduced error invariance and error convergence properties of both of them are unifying tools for their design. Lyapunov's stability theory, signal power, system energy and a power balance relation are other basic terms used in the paper. (English)
Keyword: observer
Keyword: invariance
Keyword: convergence
Keyword: filter
Keyword: signal power
Keyword: system energy
MSC: 93B07
MSC: 93C05
MSC: 93C10
MSC: 93C15
MSC: 93D20
MSC: 93E11
MSC: 94A12
idZBL: Zbl 1165.93318
idMR: MR2543133
.
Date available: 2010-06-02T18:42:57Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140017
.
Reference: [1] A.  N. Atassi and H. K. Khalil: A separation principle for the stabilization of a class of nonlinear systems.IEEE Trans. Automat. Control 44 (1999), 1672–1687. MR 1709863
Reference: [2] A. N. Atassi and H. K. Khalil: A separation principle for the control of a class of nonlinear systems.IEEE Trans. Automat. Control 46 (2001), 742–746. MR 1833028
Reference: [3] D. Bestle and M. Zeitz: Canonical form observer design for non-linear time-variable systems.Internat. J. Control 38 (1983), 419–431. MR 0708425
Reference: [4] R. S. Bucy and P. D. Joseph: Filtering for Stochastic Processes with Applications to Guidance.Interscience Publishers, New York 1968. MR 0267946
Reference: [5] V. Černý and J. Hrušák: Non-linear observer design method based on dissipation normal form.Kybernetika 41 (2005), 59–74. MR 2131125
Reference: [6] V. Černý and J. Hrušák: Comparing frequency domain, optimal and asymptotic filtering: a tutorial.Internat. J. Control and Intelligent Systems 34 (2006), 136–142. MR 2228286
Reference: [7] V. Černý, D. Mayer, and J. Hrušák: Generalized Tellegen principle and physical correctness of system representations.J. Systemics, Cybernetics and Informatics 4 (2006), 38–42.
Reference: [8] F. Esfandiari and H. K. Khalil: Output feedback stabilization of fully linearizable systems.Internat. J. Control 56 (1992), 1007–1037. MR 1187838
Reference: [9] J. P. Gauthier and G. Bornard: Observability for any $u(t)$ of a class of nonlinear systems.IEEE Trans. Automat. Control 26 (1981), 922–926. MR 0635851
Reference: [10] M. S. Ghausi and K. R. Laker: Modern Filter Design.Prentice Hall, Englewood Cliffs, New Jersey 1981.
Reference: [11] P. Glendinning: Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations.Cambridge University Press, New York 1994. Zbl 0808.34001, MR 1304054
Reference: [12] A. Glumineau, C. H. Moog, and F. Plestan: New algebro-geometric conditions for the linearization by input-output injection.IEEE Trans. Automat. Control 41 (1996), 598–603. MR 1385333
Reference: [13] R. Hermann and A. J. Krener: Nonlinear controllability and observability.IEEE Trans. Automat. Control 22 (1977), 728–740. MR 0476017
Reference: [14] J. Hrušák: Anwendung der Äquivalenz bei Stabilitätsprüfung, Tagung über die Regelungstheorie.Mathematisches Forschungsinstitut, Stuttgart 1969.
Reference: [15] J. Hrušák and V. Černý: Non-linear and signal energy optimal asymptotic filter design.J. Systemics, Cybernetics and Informatics 1 (2003), 55–62.
Reference: [16] E. C. Ifeachor and B. W. Jervis: Digital Signal Processing: A Practical Approach.Addison Wesley, Wokingham 1993.
Reference: [17] A. H. Jazwinski: Stochastic Processes and Filtering Theory.Academic Press, New York 1970. Zbl 0203.50101
Reference: [18] : .R. E. Kalman and J. E. Bertram: Control system analysis and design via the second method of Lyapunov: I. continuous-time systems, II. discrete-time systems. ASME J. Basic Engrg. 82 (1960), 371–393, 394–400. MR 0157810
Reference: [19] R. E. Kalman and R. S. Bucy: New results in linear filtering and prediction theory.ASME J. Basic Engrg. 83 (1961), 95–108. MR 0234760
Reference: [20] H. Keller: Non-linear observer design by transformation into a generalized observer canonical form.Internat. J. Control 46 (1987), 1915–1930. MR 0924264
Reference: [21] H. Kimura: Generalized Schwarz form and lattice-ladder realizations of digital filters.IEEE Trans. Circuits Systems 32 (1985), 1130–1139. Zbl 0579.94024
Reference: [22] A. J. Krener and A. Isidori: Linearization by output injection and nonlinear observers.Systems Control Lett. 3 (1983), 47–52. MR 0713426
Reference: [23] A. J. Krener and W. Respondek: Nonlinear observers with linearizable error dynamics.SIAM J. Control Optim. 23 (1985), 197–216. MR 0777456
Reference: [24] D. G. Luenberger: An introduction to observers.IEEE Trans. Automat. Control 16 (1971), 596–602.
Reference: [25] A. Muszynska: Rotordynamics.Taylor & Francis, London 2005. Zbl 1089.70001
Reference: [26] A. W. Oppenheim and R. W. Schafer: Digital Signal Processing.Prentice Hall, Englewood Cliffs, New Jersey 1975.
Reference: [27] M. R. Patel, F. Fallside, and P. C. Parks: A new proof of the Routh and Hurwitz criterion by the second method of Lyapunov with application to optimum transfer functions.IEEE Trans. Automat. Control 9 (1963), 319–322.
Reference: [28] P. Penfield, S. Spence, and S. Dunker: Tellegen’s Theorem and Electrical Networks.MIT Press, Cambridge, Mass. 1970. MR 0282747
Reference: [29] T. Ph. Proychev and R. L. Mishkov: Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input.Automatica 29 (1993), 495–498. MR 1211308
Reference: [30] J. W. Rayleigh: The Theory of Sound.Dover Publications, New York 1945. Zbl 0061.45904, MR 0016009
Reference: [31] H. R. Schwarz: Ein Verfahren zur Stabilitätsfrage bei Matrizen Eigenwertproblemen.Z. Angew. Math. Phys. 7 (1956), 473–500. Zbl 0073.33901, MR 0083194
Reference: [32] S. W. Smith: The Scientist and Engineer’s Guide to Digital Signal Processing.California Technical Publishing, San Diego 1999.
Reference: [33] J. C. Willems: Dissipative dynamical systems – Part I: General theory.Arch. Rational Mechanics and Analysis 45 (1972), 321–351. MR 0527462
Reference: [34] M. Zeitz: Observability canonical (phase-variable) form for non-linear time-variable systems.Internat. J. Control 15 (1984), 949–958. Zbl 0546.93011, MR 0763769
.

Files

Files Size Format View
Kybernetika_45-2009-3_6.pdf 1.122Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo