Previous |  Up |  Next


nonmarkovian control sequence; average cost; attracting point; nonlinear optimitation; stability
We study the limit behavior of certain classes of dependent random sequences (processes) which do not possess the Markov property. Assuming these processes depend on a control parameter we show that the optimization of the control can be reduced to a problem of nonlinear optimization. Under certain hypotheses we establish the stability of such optimization problems.
[1] M. Duflo: Random Iterative Models. Springer-Verlag, Berlin 1997. MR 1485774 | Zbl 0868.62069
[2] E. B. Dynkin and A. A. Yushkevich: Controlled Markov Processes. Springer-Verlag, New York 1979. MR 0554083
[3] E. I. Gordienko: An estimate of the stability of optimal control of certain stochastic and deterministic systems. J. Soviet Math. 50 (1992), 891–899. (Translated from the Russian publication of 1989). MR 1163393
[4] E. I. Gordienko and A. A. Yushkevich: Stability estimates in the problem of average optimal switching of a Markov chain. Math. Methods Oper. Res. 57 (2003), 345–365. MR 1990916
[5] X. Guo and Q. Zhu: Average optimality for Markov decision processes in Borel spaces: a new condition and approach. J. Appl. Probab. 43 (2006), 318–334. MR 2248567
[6] O. Hernández-Lerma and J. B. Lasserre: Discrete-Time Markov Control Processes. Springer-Verlag, New York 1996. MR 1363487
[7] R. Montes-de-Oca and F. Salem-Silva: Estimates for perturbations and average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains. Kybernetika 41 (2005), 757–772. MR 2193864
[8] E. L. Porteus: Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford 2002.
[9] S. T. Rachev and L. Rüschendorf: Mass Transportation Problems. Vol. II. Springer-Verlag, New York 1998. MR 1619171
[10] T. N. Saadawi, M. H. Ammar and A. El Hakeen: Fundamentals of Telecomunication Networks. Wiley, New York 1994.
[11] V. G. Sragovich: Mathematical Theory of Adaptive Control. World Scientific, New Jersey 2006. MR 2206045
Partner of
EuDML logo