Title:
|
Optimal sequential multiple hypothesis testing in presence of control variables (English) |
Author:
|
Novikov, Andrey |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
507-528 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose that at any stage of a statistical experiment a control variable $X$ that affects the distribution of the observed data $Y$ at this stage can be used. The distribution of $Y$ depends on some unknown parameter $\theta$, and we consider the problem of testing multiple hypotheses $H_1:\,\theta=\theta_1$, $H_2:\,\theta=\theta_2, \ldots $, $H_k:\,\theta=\theta_k$ allowing the data to be controlled by $X$, in the following sequential context. The experiment starts with assigning a value $X_1$ to the control variable and observing $Y_1$ as a response. After some analysis, another value $X_2$ for the control variable is chosen, and $Y_2$ as a response is observed, etc. It is supposed that the experiment eventually stops, and at that moment a final decision in favor of one of the hypotheses $H_1,\ldots $, $H_k$ is to be taken. In this article, our aim is to characterize the structure of optimal sequential testing procedures based on data obtained from an experiment of this type in the case when the observations $Y_1, Y_2,\ldots , Y_n$ are independent, given controls $X_1,X_2,\ldots , X_n$, $n=1,2,\ldots $. (English) |
Keyword:
|
sequential analysis |
Keyword:
|
sequential hypothesis testing |
Keyword:
|
multiple hypotheses |
Keyword:
|
control variable |
Keyword:
|
independent observations |
Keyword:
|
optimal stopping |
Keyword:
|
optimal control |
Keyword:
|
optimal decision |
Keyword:
|
optimal sequential testing procedure |
Keyword:
|
Bayes |
Keyword:
|
sequential probability ratio test |
MSC:
|
60G40 |
MSC:
|
62C99 |
MSC:
|
62L10 |
MSC:
|
62L15 |
MSC:
|
93E20 |
idZBL:
|
Zbl 1165.62053 |
idMR:
|
MR2543137 |
. |
Date available:
|
2010-06-02T18:46:24Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140020 |
. |
Reference:
|
[1] N. Cressie and P. B. Morgan: The VRPT: A sequential testing procedure dominating the SPRT.Econometric Theory 9 (1993), 431–450. MR 1241983 |
Reference:
|
[2] M. Ghosh, N. Mukhopadhyay, and P. K. Sen: Sequential Estimation.John Wiley, New York – Chichester – Weinheim – Brisbane – Singapore – Toronto 1997. MR 1434065 |
Reference:
|
[3] G. W. Haggstrom: Optimal stopping and experimental design.Ann. Math. Statist. 37 (1966), 7–29. Zbl 0202.49201, MR 0195221 |
Reference:
|
[4] G. Lorden: Structure of sequential tests minimizing an expected sample size.Z. Wahrsch. verw. Geb. 51 (1980), 291–302. Zbl 0407.62055, MR 0566323 |
Reference:
|
[5] M. B. Malyutov: Lower bounds for the mean length of a sequentially planned experiment.Soviet Math. (Iz. VUZ) 27 (1983), 11, 21–47. MR 0733570 |
Reference:
|
[6] A. Novikov: Optimal sequential testing of two simple hypotheses in presence of control variables.Internat. Math. Forum 3 (2008), 41, 2025–2048. Preprint arXiv:0812.1395v1 [math.ST] (http://arxiv.org/abs/0812.1395) MR 2470661 |
Reference:
|
[7] A. Novikov: Optimal sequential multiple hypothesis tests.Kybernetika 45 (2009), 2, 309–330. Zbl 1167.62453, MR 2518154 |
Reference:
|
[8] A. Novikov: Optimal sequential procedures with Bayes decision rules.Preprint arXiv:0812.0159v1 [math.ST]( http://arxiv.org/abs/0812.0159) MR 2685120 |
Reference:
|
[9] A. Novikov: Optimal sequential tests for two simple hypotheses based on independent observations.Internat. J. Pure Appl. Math. 45 (2008), 2, 291–314. MR 2421867 |
Reference:
|
[10] N. Schmitz: Optimal Sequentially Planned Decision Procedures.(Lecture Notes in Statistics 79.) Springer-Verlag, New York 1993. Zbl 0771.62057, MR 1226454 |
Reference:
|
[11] I. N. Volodin: Guaranteed statistical inference procedures (determination of the optimal sample size).J. Math. Sci. 44 (1989), 5, 568–600. Zbl 0666.62077, MR 0885413 |
Reference:
|
[12] A. Wald and J. Wolfowitz: Optimum character of the sequential probability ratio test.Ann. Math. Statist. 19 (1948), 326–339. MR 0026779 |
Reference:
|
[13] S. Zacks: The Theory of Statistical Inference.John Wiley, New York – London – Sydney – Toronto 1971. Zbl 0321.62003, MR 0420923 |
. |