Previous |  Up |  Next

Article

Title: Optimal sequential multiple hypothesis testing in presence of control variables (English)
Author: Novikov, Andrey
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 3
Year: 2009
Pages: 507-528
Summary lang: English
.
Category: math
.
Summary: Suppose that at any stage of a statistical experiment a control variable $X$ that affects the distribution of the observed data $Y$ at this stage can be used. The distribution of $Y$ depends on some unknown parameter $\theta$, and we consider the problem of testing multiple hypotheses $H_1:\,\theta=\theta_1$, $H_2:\,\theta=\theta_2, \ldots $, $H_k:\,\theta=\theta_k$ allowing the data to be controlled by $X$, in the following sequential context. The experiment starts with assigning a value $X_1$ to the control variable and observing $Y_1$ as a response. After some analysis, another value $X_2$ for the control variable is chosen, and $Y_2$ as a response is observed, etc. It is supposed that the experiment eventually stops, and at that moment a final decision in favor of one of the hypotheses $H_1,\ldots $, $H_k$ is to be taken. In this article, our aim is to characterize the structure of optimal sequential testing procedures based on data obtained from an experiment of this type in the case when the observations $Y_1, Y_2,\ldots , Y_n$ are independent, given controls $X_1,X_2,\ldots , X_n$, $n=1,2,\ldots $. (English)
Keyword: sequential analysis
Keyword: sequential hypothesis testing
Keyword: multiple hypotheses
Keyword: control variable
Keyword: independent observations
Keyword: optimal stopping
Keyword: optimal control
Keyword: optimal decision
Keyword: optimal sequential testing procedure
Keyword: Bayes
Keyword: sequential probability ratio test
MSC: 60G40
MSC: 62C99
MSC: 62L10
MSC: 62L15
MSC: 93E20
idZBL: Zbl 1165.62053
idMR: MR2543137
.
Date available: 2010-06-02T18:46:24Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140020
.
Reference: [1] N. Cressie and P. B. Morgan: The VRPT: A sequential testing procedure dominating the SPRT.Econometric Theory 9 (1993), 431–450. MR 1241983
Reference: [2] M. Ghosh, N. Mukhopadhyay, and P. K. Sen: Sequential Estimation.John Wiley, New York – Chichester – Weinheim – Brisbane – Singapore – Toronto 1997. MR 1434065
Reference: [3] G. W. Haggstrom: Optimal stopping and experimental design.Ann. Math. Statist. 37 (1966), 7–29. Zbl 0202.49201, MR 0195221
Reference: [4] G. Lorden: Structure of sequential tests minimizing an expected sample size.Z. Wahrsch. verw. Geb. 51 (1980), 291–302. Zbl 0407.62055, MR 0566323
Reference: [5] M. B. Malyutov: Lower bounds for the mean length of a sequentially planned experiment.Soviet Math. (Iz. VUZ) 27 (1983), 11, 21–47. MR 0733570
Reference: [6] A. Novikov: Optimal sequential testing of two simple hypotheses in presence of control variables.Internat. Math. Forum 3 (2008), 41, 2025–2048. Preprint arXiv:0812.1395v1 [math.ST] (http://arxiv.org/abs/0812.1395) MR 2470661
Reference: [7] A. Novikov: Optimal sequential multiple hypothesis tests.Kybernetika 45 (2009), 2, 309–330. Zbl 1167.62453, MR 2518154
Reference: [8] A. Novikov: Optimal sequential procedures with Bayes decision rules.Preprint arXiv:0812.0159v1 [math.ST]( http://arxiv.org/abs/0812.0159) MR 2685120
Reference: [9] A. Novikov: Optimal sequential tests for two simple hypotheses based on independent observations.Internat. J. Pure Appl. Math. 45 (2008), 2, 291–314. MR 2421867
Reference: [10] N. Schmitz: Optimal Sequentially Planned Decision Procedures.(Lecture Notes in Statistics 79.) Springer-Verlag, New York 1993. Zbl 0771.62057, MR 1226454
Reference: [11] I. N. Volodin: Guaranteed statistical inference procedures (determination of the optimal sample size).J. Math. Sci. 44 (1989), 5, 568–600. Zbl 0666.62077, MR 0885413
Reference: [12] A. Wald and J. Wolfowitz: Optimum character of the sequential probability ratio test.Ann. Math. Statist. 19 (1948), 326–339. MR 0026779
Reference: [13] S. Zacks: The Theory of Statistical Inference.John Wiley, New York – London – Sydney – Toronto 1971. Zbl 0321.62003, MR 0420923
.

Files

Files Size Format View
Kybernetika_45-2009-3_10.pdf 982.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo