Previous |  Up |  Next

Article

Title: Atomicity of lattice effect algebras and their sub-lattice effect algebras (English)
Author: Paseka, Jan
Author: Riečanová, Zdenka
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 6
Year: 2009
Pages: 1040-1051
Summary lang: English
.
Category: math
.
Summary: We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions about isomorphisms and so. Namely we touch the families of complete lattice effect algebras, or lattice effect algebras with finitely many blocks, or complete atomic lattice effect algebra E with Hausdorff interval topology. (English)
Keyword: non-classical logics
Keyword: D-posets
Keyword: effect algebras
Keyword: MV-algebras
Keyword: atomicity
MSC: 03G12
MSC: 06D35
MSC: 06F25
MSC: 81P10
idZBL: Zbl 1252.06007
idMR: MR2650082
.
Date available: 2010-06-02T19:35:29Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140025
.
Reference: [1] E. G. Beltrametti and G. Cassinelli: The Logic of Quantum Mechanics.Addison-Wesley, Reading, MA 1981. MR 0635780
Reference: [2] C. C. Chang: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302
Reference: [3] F. Chovanec and F. Kôpka: Difference posets in the quantum structures background.Internat. J. Theoret. Phys. 39 (2000), 571–583. MR 1790895
Reference: [4] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346. MR 1304942
Reference: [5] R. J. Greechie, D. J. Foulis, and S. Pulmannová: The center of an effect algebra.Order 12 (1995), 91–106. MR 1336539
Reference: [6] S. P. Gudder: Sharply dominating effect algebras.Tatra Mt. Math. Publ. 15 (1998), 23–30. Zbl 0939.03073, MR 1655076
Reference: [7] S. P. Gudder: S-dominating effect algebras.Internat. J. Theoret. Phys. 37 (1998), 915–923. Zbl 0932.03072, MR 1624277
Reference: [8] G. Jenča and Z. Riečanová: On sharp elements in lattice ordered effect algebras.BUSEFAL 80 (1999), 24–29.
Reference: [9] G. Jenča and S. Pulmannová: Orthocomplete effect algebras.Proc. Amer. Math. Soc. 131 (2003), 2663–2671. MR 1974321
Reference: [10] G. Kalmbach: Orthomodular Lattices.Kluwer Academic Publishers, Dordrecht 1998. Zbl 0554.06009
Reference: [11] M. Katětov: Remarks on Boolean algebras.Colloq. Math. 11 (1951), 229–235. MR 0049862
Reference: [12] F. Kôpka: Compatibility in D-posets.Internat. J. Theor. Phys. 34 (1995), 1525–1531. MR 1353696
Reference: [13] K. Mosná: Atomic lattice effect algebras and their sub-lattice effect algebras.J. Electr. Engrg. 58 (2007), 7/S, 3–6.
Reference: [14] V. Olejček: An atomic MV-effect algebra with non-atomic center.Kybernetika 43 (2007), 343–346. MR 2362723
Reference: [15] J. Paseka and Z. Riečanová: Isomorphism theorems on generalized effect algebras based on atoms.Inform. Sci. 179 (2009), 521–528. MR 2490192
Reference: [16] J. Paseka and Z. Riečanová: Compactly generated de Morgan lattices, basic algebras and effect algebras.Internat. J. Theoret. Phys. (2009), doi:10.1007/s10773-009-0011-4. MR 2738081
Reference: [17] S. Pulmannová and Z. Riečanová: Block-finite atomic orthomodular lattices.J. Pure Appl. Algebra 89 (1993), 295–304.
Reference: [18] Z. Riečanová: Lattices and quantum logics with separated intervals, atomicity.Internat. J. Theoret. Phys. 37 (1998), 191–197. MR 1637165
Reference: [19] Z. Riečanová: Compatibility and central elements in effect algebras.Tatra Mt. Math. Publ. 16 (1999), 151–158. MR 1725293
Reference: [20] Z. Riečanová: Subalgebras, intervals and central elements of generalized effect algebras.Internat. J. Theoret. Phys. 38(1999), 3209–3220. MR 1764459
Reference: [21] Z. Riečanová: Archimedean and block-finite lattice effect algebras.Demonstratio Math. 33 (2000), 443–452. MR 1791464
Reference: [22] Z. Riečanová: Generalization of blocks for D-lattices and lattice-ordered effect algebras.Internat. J. Theoret. Phys. 39 (2000), 231–237. MR 1762594
Reference: [23] Z. Riečanová: Orthogonal sets in effect algebras.Demonstratio Math. 34 (2001), 3, 525–532. MR 1853730
Reference: [24] Z. Riečanová: Smearings of states defined on sharp elements onto effect algebras.Internat. J. Theoret. Phys. 41 (2002), 1511–1524. MR 1932844
Reference: [25] Z. Riečanová: Distributive atomic effect algebras.Demonstratio Math. 36 (2003), 247–259. MR 1984337
Reference: [26] Z. Riečanová: Continuous lattice effect algebras admitting order-continuous states.Fuzzy Sests and Systems 136 (2003), 41–54. MR 1978468
Reference: [27] Z. Riečanová: Subdirect decompositions of lattice effect algebras.Internat. J. Theoret. Phys. 42 (2003), 1415–1423. MR 2021221
Reference: [28] Z. Riečanová: Modular atomic effect algebras and the existence of subadditive states.Kybernetika 40 (2004), 459–468. MR 2102364
Reference: [29] Z. Riečanová: Basic decomposition of elements and Jauch–Piron effect algebras.Fuzzy Sets and Systems 155 (2005), 138–149. MR 2206659
Reference: [30] Z. Riečanová: Archimedean atomic lattice effect algebras in which all sharp elements are central.Kybernetika 42 (2006), 143–150. MR 2241781
Reference: [31] Z. Riečanová and Wu Junde: States on sharply dominating effect algebras.Sci. China Ser. A: Mathematics 51 (2008), 907–914. MR 2395393
Reference: [32] Z. Riečanová: Pseudocomplemented lattice effect algebras and existence of states.Inform. Sci. 179 (2009), 529–534. MR 2490193
Reference: [33] Z. Riečanová and J. Paseka: State smearing theorems and the existence of states on some atomic lattice effect algebras.J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018.
Reference: [34] T. A. Sarymsakov, S. A. Ajupov, Z. Chadzhijev, and V. J. Chilin: Ordered Algebras.(in Russian) FAN, Tashkent, 1983. MR 0781349
Reference: [35] J. Schmidt: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge.Arch. Math. 7 (1956), 241–249. MR 0084484
.

Files

Files Size Format View
Kybernetika_45-2009-6_12.pdf 846.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo