Previous |  Up |  Next

Article

Title: On metric divergences of probability measures (English)
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 6
Year: 2009
Pages: 885-900
Summary lang: English
.
Category: math
.
Summary: Standard properties of $\phi$-divergences of probability measures are widely applied in various areas of information processing. Among the desirable supplementary properties facilitating employment of mathematical methods is the metricity of $\phi $-divergences, or the metricity of their powers. This paper extends the previously known family of $\phi $-divergences with these properties. The extension consists of a continuum of $\phi $-divergences which are squared metric distances and which are mostly new but include also some classical cases like e.\,g. the Le Cam squared distance. The paper establishes also basic properties of the $\phi $-divergences from the extended class including the range of values and the upper and lower bounds attained under fixed total variation. (English)
Keyword: total variation
Keyword: Hellinger divergence
Keyword: Le Cam divergence
Keyword: Information divergence
Keyword: Jensen-Shannon divergence
Keyword: metric divergences
MSC: 62B10
MSC: 62H30
MSC: 68T10
MSC: 94A17
idZBL: Zbl 1186.94421
idMR: MR2650071
.
Date available: 2010-06-02T19:21:23Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140026
.
Reference: [1] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations.Studia Sci. Math. Hungar. 2 (1967), 299–318. MR 0219345
Reference: [2] I. Csiszár: On topological properties of $f$-divergences.Studia Sci. Math. Hungar. 2 (1967), 329–339. MR 0219346
Reference: [3] B. Fuglede, T. Topsøe: Jensen–Shannon divergence and Hilbert space embedding.In: Proc. IEEE Internat. Symposium on Inform. Theory, IEEE Publications, New York 2004, p. 31.
Reference: [4] P. Kafka, F. Österreicher, I. Vincze: On powers of $f$-divergences defining a distance.Stud. Sci. Math. Hungar. 26 (1991), 329–339. MR 1197090
Reference: [5] M. Khosravifard, D. Fooladivanda, T. A. Gulliver: Confliction of the convexity and metric properties in $f$-divergences.IEICE Trans. on Fundamentals E90-A (2007), 1848–1853. 10.1093/ietfec/e90-a.9.1848
Reference: [6] V. Kůs, D. Morales, I. Vajda: Extensions of the parametric families of divergences used in statistical inference.Kybernetika 44 (2008), 95–112. Zbl 1142.62002, MR 2405058
Reference: [7] L. Le Cam: Asymptotic Methods in Statistical Decision Theory.Springer, New York 1986. Zbl 0605.62002, MR 0856411
Reference: [8] F. Liese, I. Vajda: Convex Statistical Distances.Teubner, Leipzig 1987. Zbl 0656.62004, MR 0926905
Reference: [9] F. Liese, I. Vajda: On divergence and informations in statistics and information theory.IEEE Trans. Inform. Theory 52 (2006), 4394–4412. MR 2300826, 10.1109/TIT.2006.881731
Reference: [10] K. Matusita: Decision rules based on the distance for problems of fit, two samples and estimation.Ann. Math. Statist. 26 (1955), 631–640. Zbl 0065.12101, MR 0073899, 10.1214/aoms/1177728422
Reference: [11] F. Öesterreicher: On a class of perimeter-type distances of probability distributions.Kybernetika 32 (1996), 389–393. MR 1420130
Reference: [12] F. Österreicher, I. Vajda: A new class of metric divergences on probability spaces and its statistical applications.Ann. Inst. Statist. Math. 55 (2003), 639–653. MR 2007803, 10.1007/BF02517812
Reference: [13] I. Vajda: On the $f$-divergence and singularity of probability measures.Period. Math. Hungar. 2 (1972), 223–234. Zbl 0248.62001, MR 0335163, 10.1007/BF02018663
Reference: [14] I. Vincze: On the concept and measure of information contained in an observation.In: Contributions to Probability (J. Gani and V. F. Rohatgi, eds.), Academic Press, New York 1981, pp. 207–214. Zbl 0531.62002, MR 0618690
.

Files

Files Size Format View
Kybernetika_45-2009-6_1.pdf 922.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo